

Development and Demonstration of Advanced Tooling Alloys For Molds and Dies (CPS#1790) June 23, 2004

Kevin M. McHugh IDAHO NATIONAL ENGINEERING & ENVIRONMENTAL LABORATORY Idaho Falls, ID 83415

Enrique J. Lavernia & Yizhang Zhou UNIVERSITY OF CALIFORNIA, DAVIS Davis, CA 92697

Overview

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville, OH

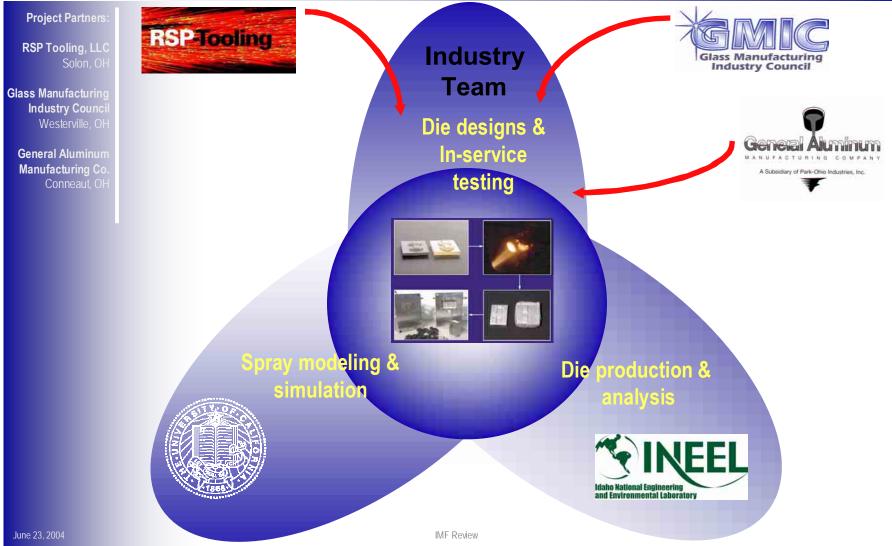
- Project overview
- Energy savings
- Accomplishments
- Commercialization activities
- Future plans

Development and Demonstration of Advanced Tooling Alloys For Molds and Dies (CPS#1790) - Project Summary

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Goals

Project Partners:


RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville, OH

- Increase die life for glass manufacture, stamping, forging and die casting by 20% by providing improved die materials and processing.
- Reduce turnaround time for molds and dies by 20%.
- Reduce energy consumption associated with the manufacture and heat treatment of dies by 25% by eliminating unit operations in conventional processing, and reducing energy usage during heat treatment.
- Challenge: Utilize spray forming and rapid solidification processing to simplify mold making and tailor properties of ferritic mold and die tool steels.
- Benefits: Reductions in cost and delivery time for tooling, reduced energy consumption, and potential to improve die performance
- FY05 Activities: Benchmarked die microstructure and properties, evaluated material response to conventional heat treatment and aging, evaluated die life, and initiated alloy development work.
- Partners: Idaho National Engineering & Environmental Laboratory, University of California-Davis, RSP Tooling LLC, Glass Manufacturing Industry Council, and General Aluminum Manufacturing Co.

Project Team

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Development and Demonstration of Advanced Tooling Alloys For Molds and Dies (CPS#1790). Barriers, Pathways, Metrics, Benefits

Idaho National Engineering & Environmental Laboratory - University of California, Davis

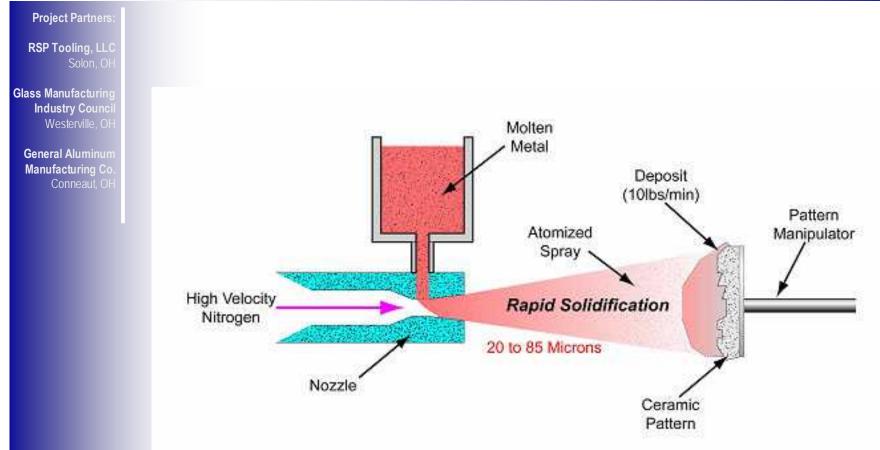
Technical Barriers_{Ad} dressed

- Mold and die manufacture is expensive, time consuming because:
 - Each is custom made to the component's geometry.
 - High accuracy required.
 - Materials difficult to work with.
- Multiplicity of machining benching, and heat treatment unit operations are labor, energy, and capital equipment intensive.

Pathway

- Develop new process for making molds & dies based on spra forming and rapid solidification.
- Benchmark die properties.
- Tailor heat treatment to process.
 - Tailor alloys to process.

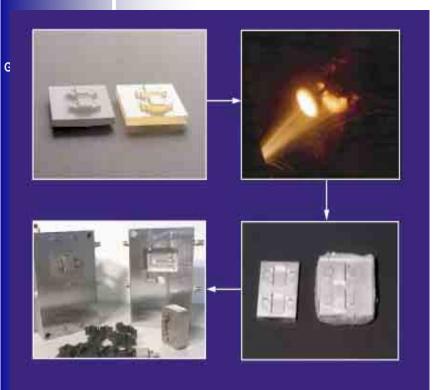
Metrics


Compare microstructure and properties with conventional forged dies

- Compare in-service performance with conventional dies of same geometry.
- Compare cost, turnaround time and energy use with conventional dies

Benefits	Value ₍ est.)
Energy Savings	19.1 trillion BTU/yr
Cost Savings	Approximately 30%. Increases with die complexity and number of duplicates
Time Savings	Approximately 25%. Increases with die complexity and number of duplicates

RSP Tooling Approach


Idaho National Engineering & Environmental Laboratory - University of California, Davis

RSP Tooling – Technology Overview

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Processing steps

- Molds and dies are used to manufacture nearly all mass produced products. Traditionally, they are machined from a block of steel.
- With RSP Tooling, a spray of molten steel droplets accurately captures the shape and details of a pattern.
- By eliminating machining, grinding, polishing and heat treatment unit operations, RSP Tooling reduces cost and turnaround time for molds and dies.
- R&D 100 Award winner, Energy@23 Award winner, and Federal Laboratory Consortium Award winner.

Photomicrographs of A2 tool steel. 50X, etched

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC

Sources of Energy Savings

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville, OH

- Elimination of steel mill unit operations for producing forged plate, rod, bar, etc. suitable for the demands of die-casting, stamping, forging, etc.
- Elimination of many of the machining, grinding, and polishing unit operations necessary to transform the forged steel into molds and dies.
- Potential for die life extension as a result of unique microstructural qualities found in rapidly solidified tool steel.
- The ability to heat treat the tool steel using relatively low temperature artificial aging rather than conventional autenitization/quench/temper heat treatment.

Energy Use

Idaho National Engineering & Environmental Laboratory - University of California, Davis			
Processing Step	<i>Energy Use</i> – Conventional Approach (trillion BTU/yr)	<i>Energy Use</i> – New Technology (trillion BTU/yr)	<i>Energy</i> <i>Savings</i> (trillion BTU/yr)
Elimination of steel mill unit operations	10.00	0.33	9.67
Elimination of machining operations			

Electricity is 91.5% of total, natural gas is 4.4% of total, oxygen is 4.1% of total

R&D Methodology

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville, OH

- Industry partners choose tooling alloys to be processed and provide die designs for forming operations such as forging, die casting and glass component manufacture.
- Benchmark microstructure and material properties of dies processed by spray forming.
- Model heat transfer, solidification, and momentum phenomena associated with spray forming of dies.
- Tailor heat treatment and alloy chemistry to rapid solidification processing.
- Industry partners test tools by running them in production, analyzing their dimensional accuracy, surface finish, machinability, weldability, etc.

Accomplishments (INEEL)

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville, OH

General Aluminum Manufacturing Co. Conneaut, OH

Process Development

- Developed freeze casting technology and procedures for ceramic tool patterns. Evaluated accuracy, turnaround time, and ejection from molds. Evaluated shrinkage of freeze-cast patterns as the composition and concentration of the slurry were varied.
- Adapted uniaxial press to spray forming chamber. Built pattern manipulator for use with press.
- Measured single-phase flow behavior of atomizer as geometry was varied.

Die Manufacture and Industry Analysis

- Provided dies to industry partners for in-service analysis in die casting, permanent mold casting, forging, extrusion, plastic injection molding, and glass manufacture.
- Provided dies to industry partners for dimensional analysis.

Accomplishments (INEEL, cont.)

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville, OH

General Aluminum Manufacturing Co. Conneaut, OH

Microstructure & Property Analysis of Spray–Formed Dies

- Evaluated microstructure and hardness of spray-formed A2, H13, M2, and modified H13 tool steels.
- Evaluated response of spray-formed H13 to quench rate.
- Evaluated aging response of spray-formed A2, H13, M2, and modified H13 tool steels.
- Evaluated temper response of sprayformed/conventionally heat treated A2 and H13 tool steels.
- Evaluated softening behavior of H13 tool steel at elevated temperature.
- Evaluated tensile properties and impact energy of spray formed, aged, and conventionally heat treated H13 steel.
- Performed Differential Thermal Analysis (DTA) of SF H13.
- Assessed microstructure response of spray-formed H13, M2 and A2 steels to uniaxial compressive forces immediately following deposition.
- Evaluated microstructure and properties of H13 dies made by RSP Tooling, LLC.

Accomplishments (UCD)

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville, OH

General Aluminum Manufacturing Co. Conneaut, OH

Microstructure & Property Analysis of Spray-Formed Dies

- Microstructural characterization of spray-formed H13 and A2 tool steels via optical microscope (OM) scanning electron microscope (SEM), and energy dispersive spectroscopy (EDS).
- Microhardness measurements of spray formed H13 and A2 tool steels.
- Microstructure characterization of Charpy V-notch impact fracture surface of spray formed H13 tool steel.
- XRD analysis of residual stress of as-spray formed A2 steel.
- Residual stress analysis of H13 die sample by neutron diffraction (with Chalk River Laboratories, NRC Canada).

Accomplishments (UCD, cont.)

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville, OH

> General Aluminum Manufacturing Co. Conneaut, OH

Microstructure & Property Analysis of Spray–Formed Dies (cont.)

- Strategies have been established for preparation of asdeposited A2 TEM samples (with porosity) using jet polishing.
- Microstructure characterization of A2 produced via deposition plus pressing at INEEL.

Modeling

- Numerical analysis (finite element method) of stress developed during spray forming.
- A numerical model has been developed to predict the microstructural constituents and the size of carbides in as-deposited A2 and H13 tool steels.

Mold and Die Steels Processed

Idaho National	Engineering & Environmental Laboratory - Universit	
Idaho National Project Partners: RSP Tooling, LLC Solon, OH Glass Manufacturing Industry Council Westerville, OH General Aluminum Manufacturing Co. Conneaut, OH	 H13 Chemistry: 0.4C-0.35Mn-1Si-5.2Cr-1.3Mo-0.95V Classification: Hot Forming Applications: Die casting, plastic injection, extrusion, forging. Age hardening response: 3 HRC rise to peak age hardness. Subtle microstructure changes during aging. Application: Cold Forming Applications: Blanking, forming, punching, glass manufacture. Age hardening response: 10 HRC rise to peak age hardness. Notable microstructure changes during aging. 	M2 • Chemistry: 0.85 C-0.30 Mn-0.30 Si-4.2 Cr-5.0 Mo-6.4 W-2.0 V • Classification: High Speed Steel • Applications: Form tools, punches, cutting tools. • Age hardening response: 7 HRC rise to peak age hardness. • Subtle microstructure changes during aging. H13-MOD #1 • Chemistry: 0.6C-0.35Mn-1Si-5.2Cr-1.3Mo-2V • Age hardening response: 3 HRC rise to peak age hardness. • Subtle microstructure changes during aging.
lupo 22, 2004	IME Daviou	

General Observations

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC Solon, OH

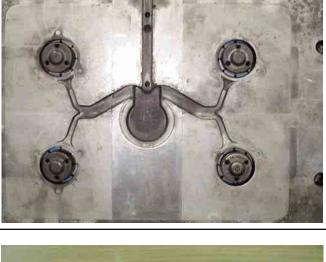
Glass Manufacturing Industry Council Westerville, OH

- Rapid solidification provides powerful tool to control carbide formation and growth and grain structure.
- Quench rate influences carbide distribution and nature of matrix phases. Quench rate during deposition more important than post-deposition quench rate.
- Rapidly solidified ferritic tool steels exhibit positive response to aging that is not observed in conventionally-processed material. Both respond similarly to conventional heat treatment
- Unique combination of properties possible with aging that can lead to die-life extension. Aging also eliminates the risk of tool distortion.
- Application of compressive forces immediately after deposition can eliminate porosity and disrupt formation of carbide network in highly-alloyed tool steels.

Examples of industry-conducted production runs in aluminum die casting and steel forging

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:


RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville, OH

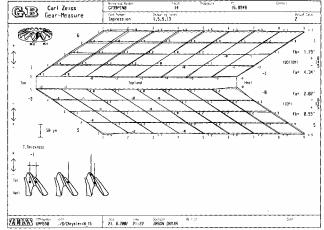
General Aluminum Manufacturing Co. Conneaut, OH

June 23, 2004

- Piston cover dies for aluminum die casting (alloy 380).
- Spray-formed H13 dies run side-by-side with conventional machined dies are shown mounted in holding block.
- Spray-formed dies were run in overaged condition.
- Spray-formed dies outlasted conventional dies by 25%
- Spray-formed & conventionally heat treated M2 tool steel forging die (right) used to produce steel gears (left).
- SF die produced suitable number of parts to be classified as a production run. Die life extension not observed. Same failure mode as with machined dies.

Dimensional analysis of spray-formed tools and ceramic patterns

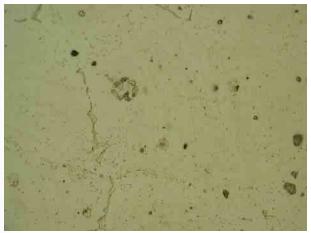
Idaho National Engineering & Environmental Laboratory - University of California, Davis


Project Partners:

RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville. OH

- Industry partner analyzed accuracy and repeatability of process.
- Slip cast and freeze-cast Al₂O₃ceramic formulations tested for accuracy.
- Freeze-cast ceramic formulation provided accuracy results that were excellent and consistent.
- Accuracy of spray-formed dies similar to conventional toolmaking practices (±0.002"). Excellent repeatability.
- Scaling algorithms under development.


Photomicrographs of H13 tool steel at various cooling rates. 200X, nital etch.

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC Solon, OH

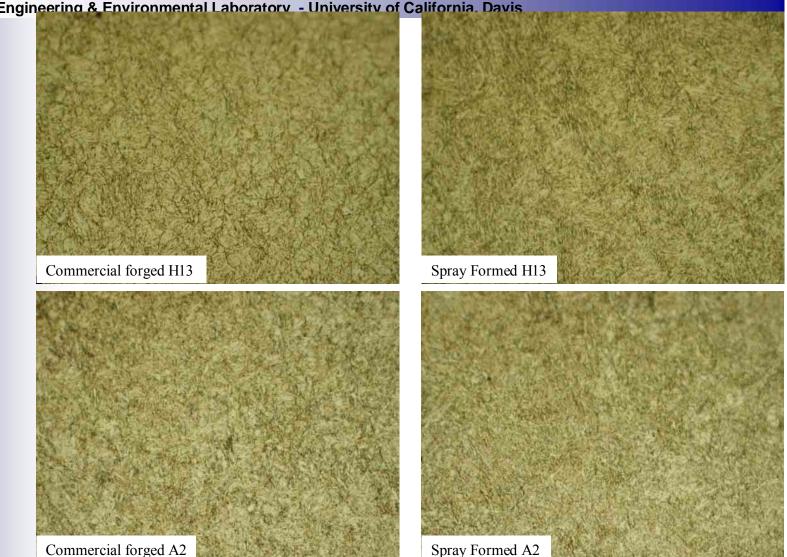
Glass Manufacturing Industry Council Westerville, OH

Cast, polished

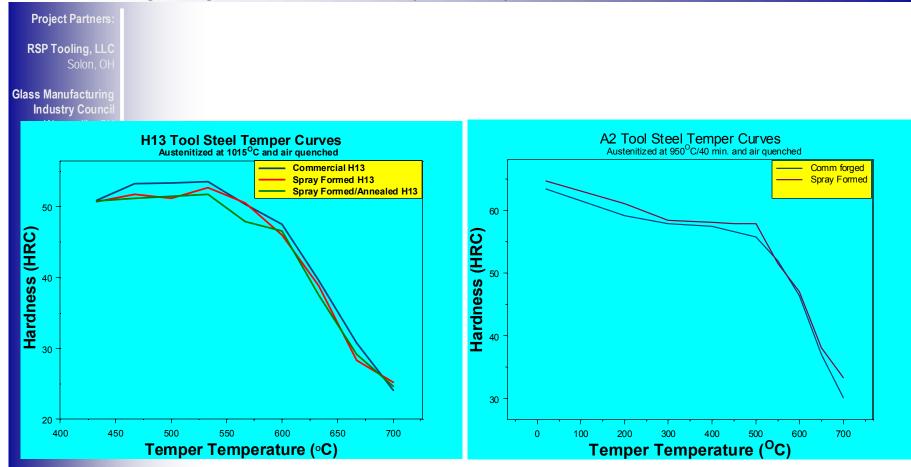
Spray formed. Free convection cooled. Interior

Spray formed. Free convection cooled. Deposit/pattern interface

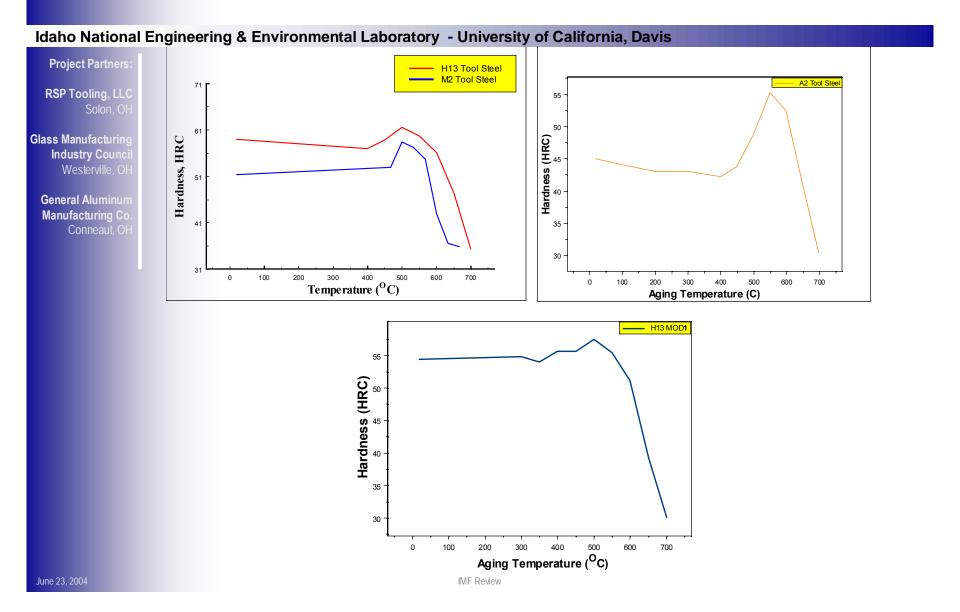
Spray formed. Forced convection cooled. Interior


Photomicrographs of conventionally heat treated H13 and A2 tool steels. 1000X, nital etch.

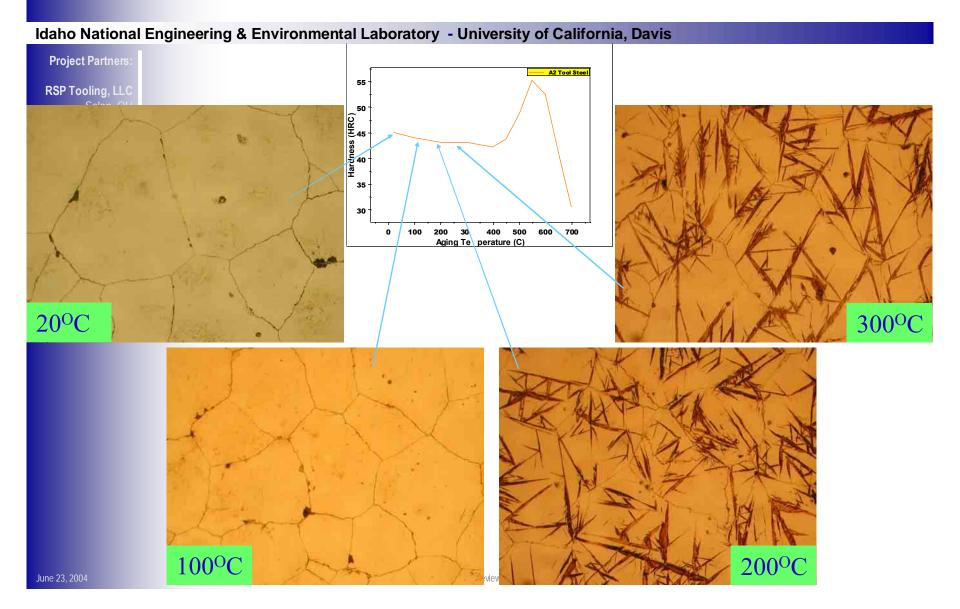
Idaho National Engineering & Environmental Laboratory - University of California, Davis

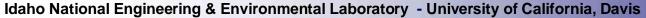

RSP Tooling, LLC

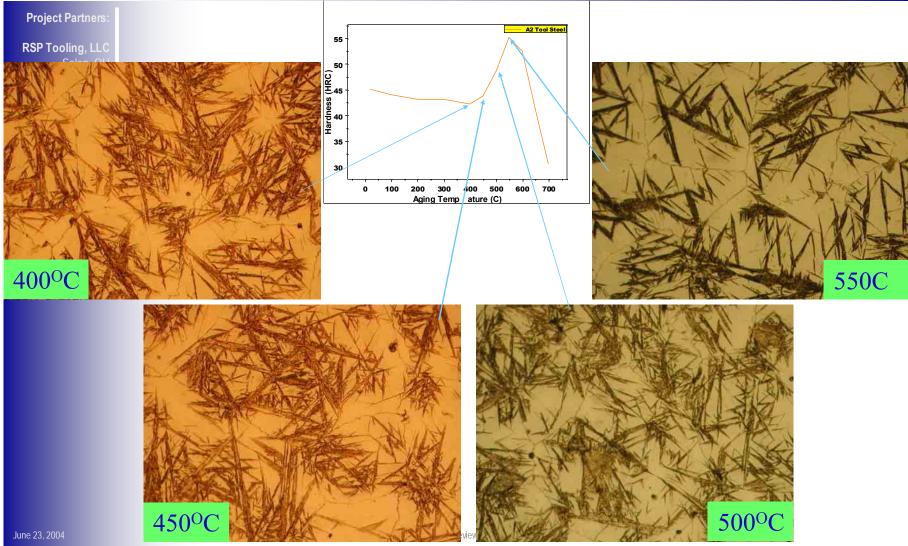
Glass Manufacturing Industry Counc Westerville, OF



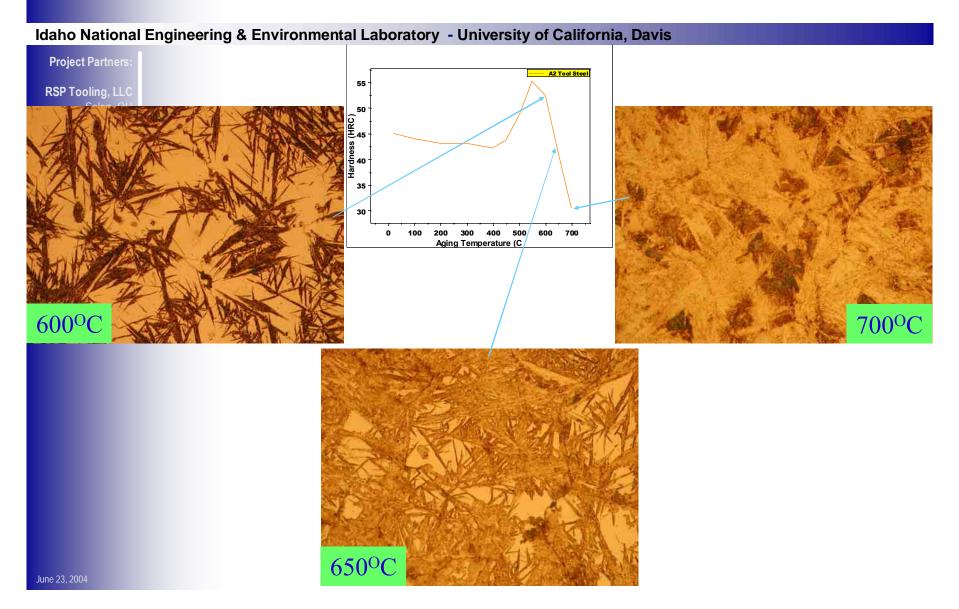
Temper response of austenitized and air quenched H13 and A2 tool steels.


Idaho National Engineering & Environmental Laboratory - University of California, Davis


Hardness response of spray-formed A2, H13, M2 and H13 MOD#1 tool steels to artificial aging



Microstructure transformation in spray-formed A2 during aging, ~500X.



Microstructure transformation in spray-formed A2 during aging, ~500X.

Microstructure transformation in spray-formed A2 during aging, ~500X.

RSP Tooling Process Has Been Commercialized

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Commercial beta machine

Industry participants with commercial machine at RSP Tooling, LLC Open House • The RSP Tooling process has been commercialized with the formation of RSP Tooling, LLC. Company is located at The Technology House, a rapid prototyping service bureau located in Solon, OH.

•Beta machine, designed/constructed by Belcan Engineering, is operational and selling 7" x 7" inserts.

•Company plans to sell tools and machines, and scale to larger size inserts.

1 Year Ago (courtesy of RSP Tooling, LLC)

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Pai

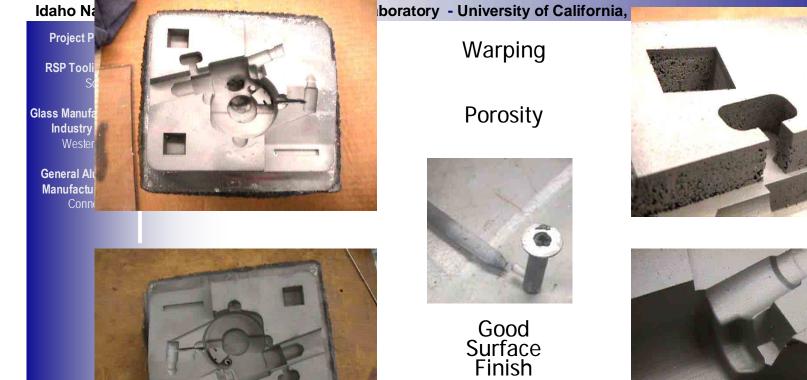
RSP Toolin

Glass Manufac Industry C Westervi

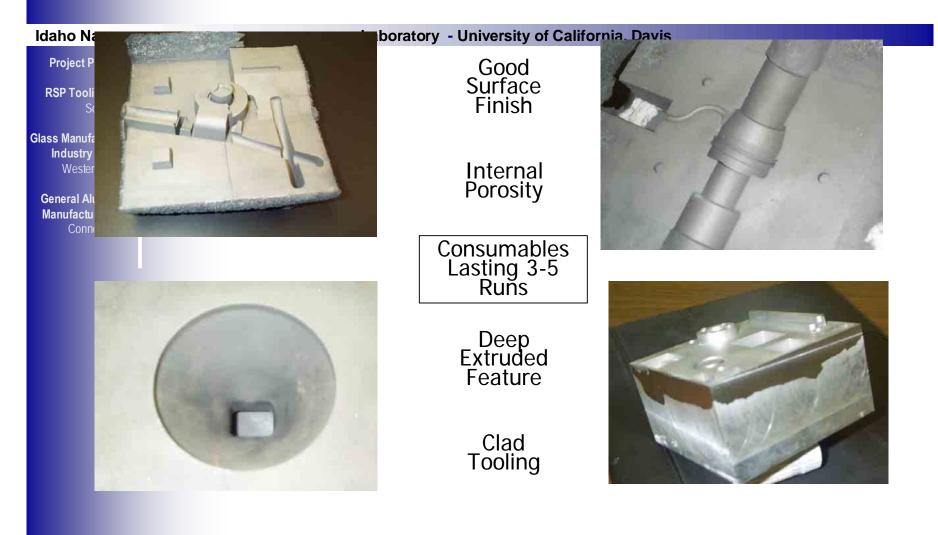
> General Alur Manufacturi Connea

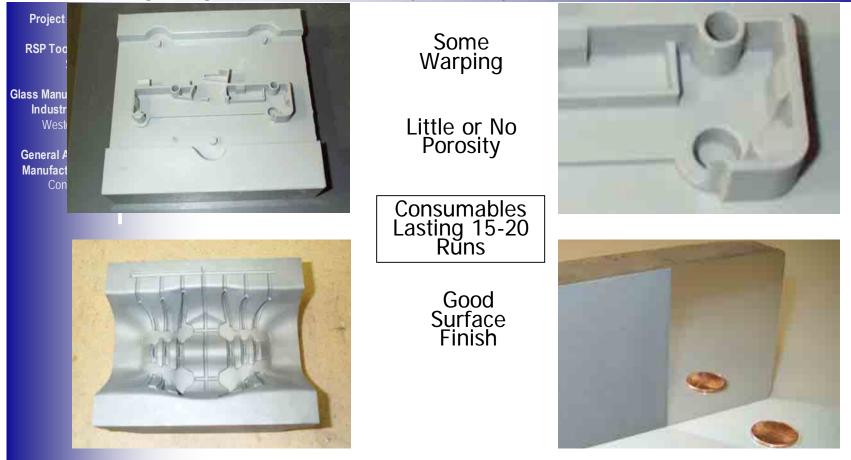
Hot, Course Spray

Consumables Destroyed



Poor Surface Finish


1 Year Ago (cont.) (courtesy of RSP Tooling, LLC)


Unfilled Standing Feature

6 Months Ago (courtesy of RSP Tooling, LLC)

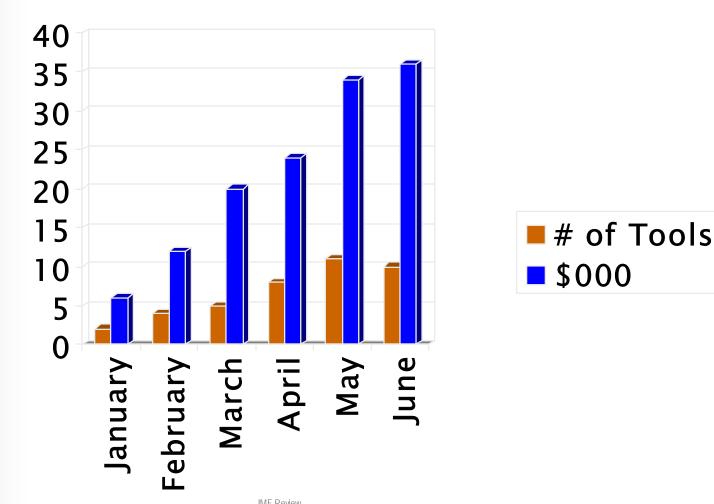
Courtesy of RSP Tooling, LLC)

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Metrics (courtesy of RSP Tooling, LLC)

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners: RSP Tooling, LLC							
Solon, OH Glass Manufacturing Industry Council Westerville, OH General Aluminum Manufacturing Co. Conneaut, OH		Weber (die casting die)	RSP	% Imp	Metaldyne (forging die)	RSP	% Imp
	Days	21	16	23%	10	8	20%
	Cost	\$6578	\$5100	22%	\$1200	\$800	33%


Escalating 2004 Sales

(courtesy of RSP Tooling, LLC)

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners RSP Tooling, LLC

Glass Manufacturing Industry Counc Westerville, OF

The Green Machine

(courtesy of RSP Tooling, LLC)

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville, OH

- ♦ A 50# tool uses 50# of steel
 - Normal machine scraps 50# in chips
- Only release to atmosphere is cool nitrogen
 - Normal machine uses cutting fluids
- Significant reduction in energy usage
 - More machines, more costly metal, heat treatment

Industries with tools made on the Beta machine

(courtesy of RSP Tooling, LLC)

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:		
RSP Tooling, LLC Solon, OH	Industry	# of Tools
Glass Manufacturing Industry Council		
Westerville, OH General Aluminum	Forging	12
Manufacturing Co. Conneaut, OH		1.2
	Plastic Injection Molding	13
	Dia Casting	8
	Die Casting	0
	Extrusion	2
	Permanent Mold Casting	3

PM Combustion Molds

(courtesy of RSP Tooling, LLC)

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville, OH

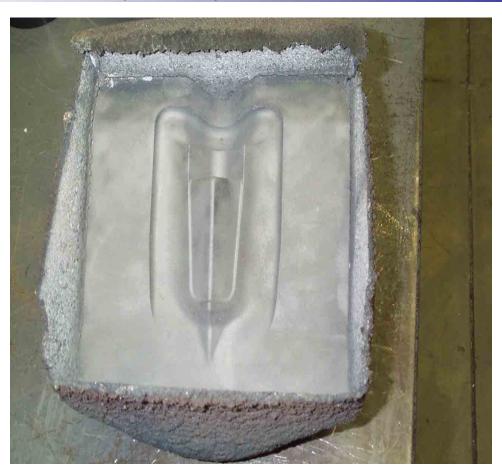
Die Cast Die (courtesy of RSP Tooling, LLC)

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville, OH


100# Forging Die (courtesy of RSP Tooling, LLC)

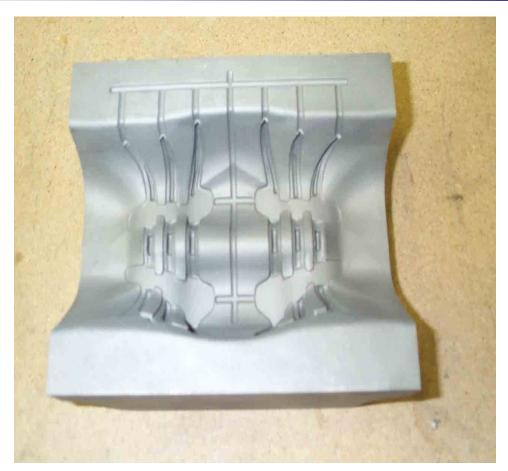
Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville, OH

Plastic Injection Mold


(courtesy of RSP Tooling, LLC)

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville, OH

2003-2004 Patents/Presentations/Publications

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:	Patents:
RSP Tooling, LLC Solon, OH	 U.S. Patent 6,746,225 entitled "Rapid Solidification Processing System For Producing Molds, Dies, and Related Tooling" was awarded. Foreign patents have been applied for (allowances in Italy and Canada thus far).
Glass Manufacturing Industry Council	Presentations:
Westerville, OH General Aluminum	 Kevin M. McHugh, "Production of Molds and Dies Using the RSP Tooling Approach," SDMA 2003 and ICSF V, Bremen, Germany, June, 2003.
Manufacturing Co. Conneaut, OH	 James R. Knirsch, "Rapid High Volume Production Tooling," <i>Rapid Prototyping and Manufacturing 2003</i> conference, The Society of Manufacturing Engineers, Dearborn, MI, May, 2003.
	• K. M. McHugh, "Rapid Solidification Process (RSP) Tooling for Moldmaking," presented at <i>Moldmaking 2003</i> Conference and Expo, Cleveland, OH April 29, 2003.
	 An Open House was conducted by RSP Tooling, LLC Feb. 4–7, 2003 in Solon, OH. Approximately 200 people attended. Presentations on RSP Tooling technology were given by INEEL and industry participants in this project.
	Publications:
	• Kevin M. McHugh, "Use of RSP Tooling to Manufacture Die Casting Dies" <i>Die Casting Engineer,</i> July 2004 (in press).
	 "Modeling and Experimental Investigation of Spray-Formed H13 Steel Tooling", <i>Materials Science & Technology 2004</i>, New Orleans, Louisiana, September 26-29, 2004) (in preparation).
	 James R. K nirsch, "Reducing Time to Market", Flow Front 4 (1), P.15, April, 2004. "Rapid-Fire Production Tooling", Cutting Tool Engineer P. 96, March 2004.

2003-2004 Patents/Presentations/Publications (cont.)

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville, OH

> General Aluminum Manufacturing Co. Conneaut, OH

Publications (cont).

- "New Process Produces Leading-Edge Bimetallic Tooling", North American ool, Mold making News, P. 16, Jan-Feb 2004.
- Kevin M. McHugh and James E. Folkestad, "Production of Molds and Dies Using the RSP Tooling Approach," proceedings of SDMA 2003 and ICSF V, Bremen, Germany, P. 5-123, (2003).
- K. M. McHugh, "Rapid Solidification Process (RSP) Tooling For Moldmaking," proceedings of *Moldmaking 2003*, Cleveland, OH, April 29 – May 1, 2003, P.23 (2003).
- ◆ James R. Knirsch, "RSP Tooling," *Advanced_M aterials Processes*, <u>161</u>(1), 62 (2003).
- "Metalworking Executive Rolling Out Speedier Tooling Technology," Crain's_{Cl} eveland Business, P. 4., February, 2003.
- "New Process Produces Tooling Very Quickly," *Tool_a nd Moldmaking* P. 14, March, 2003.
- "Spray-On Tooling Machine," *American_M achinist*, P. 40, April, 2003.
- "Tooling," *Time* ompression Technologies, P. 51, April, 2003.
- James R. Knirsch, "Rapid High Volume Production Tooling," proceedings of *Rapid Prototyping* nd_{Ma} nufacturing 2003 conference, paper MF03-226. The Society of Manufacturing Engineers, Dearborn, MI, May, 2003.
- "Lessons From the Gulf War," *Taking im* Newsletter, June, 2003.
- "Solon's RSP Ready to Roll," *Crain's Cleveland Business*, December, 2003, P.1.

Future Direction

Idaho National Engineering & Environmental Laboratory - University of California, Davis

Project Partners:

RSP Tooling, LLC Solon, OH

Glass Manufacturing Industry Council Westerville, OH

- Continue alloy development work.
- Spray form dies with modified alloys.
- Run dies in production.