Recipient	In Collaboration with	Location	Project Name	DOE Fund Request
The University of Utah	 Army Research Laboratory Reading Alloys/Ametek Ford Motor Company 	Salt Lake City, UT	A New Method for Low-Cost Production of Titanium Alloys for Reducing Energy Consumption of Mechanical Systems	\$1,460,285
	his technology combines a lower		nts could produce a ten-fold material usage improvement elting process with minimal post-processing steps to achie	
General Motors	 Meridian Lightweight Technologies The Ohio State University 	Warren, MI	Development of Energy Efficient Integrated Die Casting Process for Large Thin-Walled Magnesium Applications	\$2,672,124
piece, multi-step	, stamping and joining process cu	rrently used to n	esium alloy to potentially achieve a 50% energy savings co nanufacture car doors. By substituting magnesium for ste rovements and carbon emission savings.	
MEMC Electronic Materials, Inc.	 Sandia National Laboratories Georgia Institute of Technology 	St. Peters, MO	High-Quality, Low-Cost Bulk Gallium Nitride Substrates Grown by the Electrochemical Solution Growth Method	\$3,680,000
displays, and oth drive motor ene	er power electronics. Use of GaN	—a semi-condu	cost of and improve the output for light-emitting diodes, s cost of and improve the output for light-emitting diodes, s ctor material—holds the potential to reduce lighting ener motor energy used for transportation by 60%, and energ	gy use by 75%, electric
Lyondell Chemical Company	BASF Qtech Inc.Quantiam Technologies Inc.	Newtown Square, PA	Catalyst-Assisted Production of Olefins from Natural Gas Liquids: Prototype Development and Full-Scale Testing	\$4,500,000
is the largest use Btu annually. The	r of energy in the chemical indust	ry, a 6 to 10% re alled during the	surface deposits on ethylene steam cracker furnace coils. eduction in energy consumption per plant would save an e normal maintenance cycle and with the growing availabil n olefins production.	stimated 20-35 trillion

Recipient	In Collaboration with	Location	Project Name	DOE Fund Request
American Iron and Steel Institute (AISI)	 University of Utah Berry Metal Company United States Steel Corp. The Timken Co. ArcelorMittal USA 	Salt Lake City, UT	A Novel Flash Ironmaking Process	\$7,120,000
• •			nd uses natural gas, hydrogen, or syngas as a reducing age with the potential to reduce iron making energy consump	
Research Triangle Institute	 Duke University Veolia, Inc.	Research Triangle Park, NC	Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse	\$4,800,000
distillation—will	be developed and demonstrated ocess will reuse more than 50% of	. This system will	use that combines two known processes—forward osmos use waste heat to treat a wide variety of waste streams a ewater, decrease wastewater discharge, and recover sign	at manufacturing
The Dow Chemical Company	 Oak Ridge National Laboratory Ford Motor Company Michigan Economic Development 	Midland, MI	Scale-Up of Novel Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch	\$9,000,000
widespread appl	ocess for making carbon fiber uses	ines, and other in	fin material in place of conventional polyacrylonitrile. Lov ndustrial applications. This novel process could potentially	
Teledyne Scientific and Imaging	 Agenda 2020 Technology Alliance Georgia Institute of Technology 	Thousand Oaks, CA	Sacrificial Protective Coating Materials that Can Be Regenerated In-Situ to Enable High-Performance Membranes	\$2,110,000
Scientific and Imaging A highly durable process By elim	Georgia Institute of Technology membrane coating will be developed	Oaks, CA	Regenerated In-Situ to Enable High-Performance	

Recipient	In Collaboration with	Location	Project Name	DOE Fund Request	
Massachusetts Institute of Technology (MIT)		Cambridge, MA	Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets	\$1,000,000	
A new, continuous manufacturing process to make high molecular weight, high thermal conductivity polyethylene fibers and sheets will be developed to replace metals and ceramics in heat-transfer devices. Project innovations include using massively parallel nanochannels to align gel molecular chains and arranging closely spaced nanochannels to assist in sheet formation. Because polyethylene density is 35% less than aluminum, the new materials and process steps developed as part of this project could generate fuel savings for transportation applications.					
Third Wave Systems, Inc.	 Purdue University Georgia Institute of Technology University of California Santa Barbara The Pennsylvania State University 	Minneapolis, MN	Sustainable Manufacturing via Multi-Scale Physics-Based Process Modeling and Manufacturing-informed Design	\$4,069,882	
Micro-structural modeling tools for metals will be developed and used to demonstrate a design framework to improve the understanding of dynamic response and statistical variability. This project will enable design engineers to evaluate the effects of design changes and material selection; anticipate quality and cost prior to implementation on the factory floor; and enable low-waste, low-cost manufacturing.					
Air Products and Chemicals, Inc.	 The Pennsylvania State University 	Allentown, PA	Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes	\$1,200,000	
A microbial reverse electrodialysis technology will be combined with waste heat recovery to convert effluents into electricity and chemical products, including hydrogen gas. This technology, which uses salinity gradients to overcome the thermodynamic barriers and over potential associated with hydrogen production, will be broadly applicable in U.S. industry, including the chemical, food, pharmaceutical, and refining sectors. By providing on-site electricity generation, the technology could save 40 trillion Btu annually and avoid 6 million tons of carbon dioxide emissions each year.					

Recipient	In Collaboration with	Location	Project Name	DOE Fund Request	
PolyPlus	Corning Incorporated		Innovative Manufacturing of Protected Lithium	\$8,999,920	
Battery	 Johnson Controls 	Berkeley, CA	Electrodes for Ultra High Energy Density		
Company	Incorporated		Batteries		
A protected lithium electrode, solid electrolyte, and scaled-up manufacturing process will be developed for high-energy-density lithium batteries. This project will scale up production from a batch mode to a high-volume process. Commercial introduction of this manufacturing process could extend the driving range of electric vehicles, in turn saving 100 trillion Btu of energy annually.					
Delphi Automotive Systems, LLC	Raydiance, Inc	Rochester, NY	High Metal Removal Rate Process for Machining Difficult Materials	\$3,700,000	
This project will develop fast lasers that use micro precision ablation in a single-step manufacturing process and verify this operation for producing flow control openings for gasoline direct-injection fuel injectors. This improved process will reduce re-work and scrap rates; eliminate secondary processes such as etching, surface cleaning, or deburring; and increase laser machining energy efficiency by up to 20%–25% over standard practice.					
Total				\$54,312,211	