QuickPEP Tool Demonstration

Riyaz Papar, PE, CEM
Director, Energy Assets & Optimization
Hudson Technologies Company

William Orthwein, CEM
US Department of Energy

February 26, 2009
Agenda

• Introduction
• Plant Energy Profiling
• QuickPEP Demonstration
• New features in Quick 2.0
• Wrap Up
Plant Energy Profiling

- There are different levels of Plant Energy Profiling

 - 10,000 ft level – Overall Plant
 - Phone interview
 - 1-day plant walkthrough
 - Using QuickPEP

 - 1,000 ft level – System level
 - Gap Analysis (Qualitative only)
 - 1-day plant walkthrough
 - 3-day plant Energy Savings Assessments (ESA)
 - Using US DOE BestPractices System Tools
10,000 ft approach - The Big Picture in your Plant

• Looking at the forest first
 – Understanding your plant from an energy supply & demand perspective
 – Different supply streams
 – Different energy consumption (conversion) systems
 – Puts everything down on one piece of paper

• Limited resources
 – Time – major constraint
 – Available information
10,000 ft Approach

INPUTS
• Plant description
• Utility supply data – electricity, fuel & steam
• Energy consuming system information
• Scorecard responses

OUTPUTS
• Overall picture of plant energy use
• Summary of energy cost distributions
• Preliminary assessment & comparison
• Areas for energy efficiency improvement
• Energy cost reduction potential
US Department of Energy’s

QuickPEP 2.0 Tool

Quick Plant Energy Profiler Tool

ONLINE ONLY

Website

http://www1.eere.energy.gov/industry/bestpractices/software.html
Industrial Sectors

<table>
<thead>
<tr>
<th>NAICS No.</th>
<th>Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>325</td>
<td>Chemicals</td>
</tr>
<tr>
<td>321,322</td>
<td>Forest Products</td>
</tr>
<tr>
<td>324110</td>
<td>Petroleum Refining</td>
</tr>
<tr>
<td>33111</td>
<td>Integrated Steel</td>
</tr>
<tr>
<td>311,312</td>
<td>Food and Beverage</td>
</tr>
<tr>
<td>212</td>
<td>Coal, Metal Ore etc.</td>
</tr>
<tr>
<td>3313</td>
<td>Aluminum and Alumina</td>
</tr>
<tr>
<td>336</td>
<td>Transportation Equipment</td>
</tr>
<tr>
<td>332</td>
<td>Fabricated Metals</td>
</tr>
<tr>
<td>334,335</td>
<td>Comp. Electronics and Appl.</td>
</tr>
<tr>
<td>326</td>
<td>Plastics and Rubber Products</td>
</tr>
<tr>
<td>EAF Steel</td>
<td></td>
</tr>
<tr>
<td>313,314,315,316</td>
<td>Textiles</td>
</tr>
<tr>
<td>327130</td>
<td>Cement</td>
</tr>
<tr>
<td>333</td>
<td>Heavy Machinery</td>
</tr>
<tr>
<td>3272</td>
<td>Glass and Glass Products</td>
</tr>
<tr>
<td>3315</td>
<td>Foundries</td>
</tr>
</tbody>
</table>
Input Data Options

• Supply information
 – Average utility information
 – Actual utility bill information (worksheet)

• Energy consuming systems
 – Typical systems for that industry selected
 – User checked only

• Energy consumption (Demand) information
 – Average distributions for that industry selected
 – User can change the distributions
 – User can input actual energy consumption information, if available
Input Data Options

• Energy consuming system assessment for potential energy savings opportunities
 – Radio-button selection
 – User can complete a detailed score-card for a system
Output Data

• Case information

• Annual energy purchases: Graphical & Tabulated

• Annual energy consumption: Graphical & Tabulated

• Annual potential energy savings: Graphical & Tabulated
Output Data Options

• Formats
 – On screen display
 – “pdf” file
 – “qpep” file

• Tabulated results in energy (MMBtu) and cost ($)

• Graphical results can be displayed in either energy or cost units
QuickPEP Tool Application

QuickPEP Tool Demonstration
QuickPEP Tool Results

Establish Baselines

Identify Energy Savings

Opportunities By System

Help/References

QuickPEP Tool

SSST/SSAT
3E+
N_xEAT
PHAST
PSAT
FSAT
CHP Tool
AirMaster+
MotorMaster+
CWSAT
QuickPEP - Summary & Conclusions

• Use a top-down approach at your plant with QuickPEP as a starting point to:
 – Understand energy flow
 – Identify cost impacts
 – Identify potential energy cost reduction project areas
 – Benchmark plants at a corporate level
 – Benchmark individual systems at the plant level
 – Monitor performance over a period of time
Summary & Conclusions

• Prioritize different energy systems based on energy savings potential and undertake an ESA on each of those systems

• Continue further due diligence to implement energy savings and performance improvement projects
Questions & Answers