High Reliability Inverter Initiative

Status Update October, 2004

Objectives (Additional to Standard)

QUALITATIVE

- Reliable
- Long Life
- Rugged

QUANTITATIVE

- 15 year warranty
- MTBF of 50 years or more

Reliable/Long Life/Rugged

- Inherent Weaknesses ٠
 - Defects
 - Aging (FITs)
 - Wearout

External Forces

•

- Temperature
- Air density
- Humidity
- Ultra-Violet
- Line and Array
 - Spikes
 - Surges
 - Sags
- Shock/Vibration

- \blacktriangleright µCracks
- ➢ Metal Migration
- Diffusion, Filamentation
- Crystallization

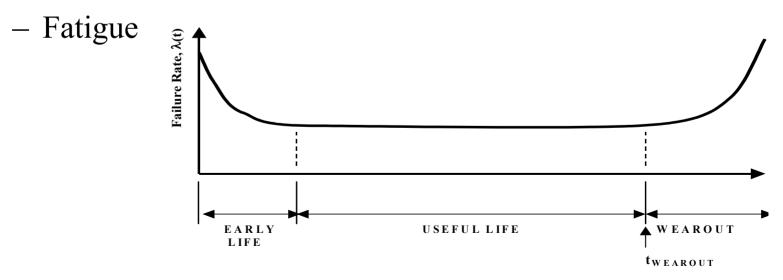
- **Examples**
- > Plasticizers
- \blacktriangleright Conductive Condensation \triangleright Thermal Shock \rightarrow Cracks
- Device Stress

- **Internal Forces** •
 - Power \rightarrow Temperature
 - dP/dt (thermal shock)
 - V, I
 - dI/dt, dV/dt
 - Aging Mechanisms

- ➢ Fatigue due to Cycling

Focus of Initiative

- Eliminate if Possible
 - Unreliable parts
 - Parts with pronounced Wearout
- Mitigate/Minimize Environmental Stress
- Minimize Dissipation, Maximize Heat Transfer
- Rugged Array and Grid Interface, Rugged Packaging
- Transition to Manufacturing critical (Design for Manufacturing, DFM)
 - Parts Qualification and Handling
 - Design Rules

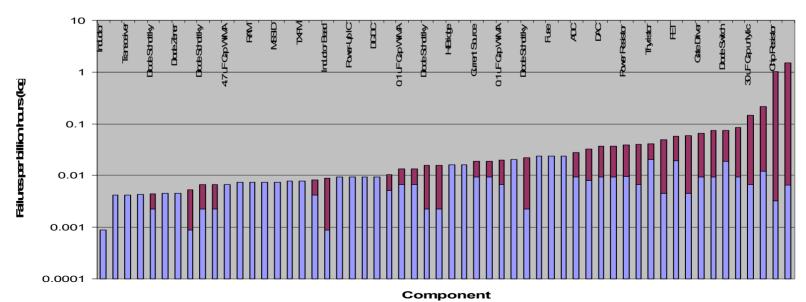

FITs - Temperature is Critical

- Ambient Temperature
- ΔT (Power, R_{TH})
- Cycling

$$MTBF = \frac{1 \times 10e9}{\sum_{i=1}^{n} q_{i} \times r_{i}}$$

 r_i = Failure in Time (FIT)

- Cracking, crack propagation
- Flexing, shear stress at interface (expansion mismatch)

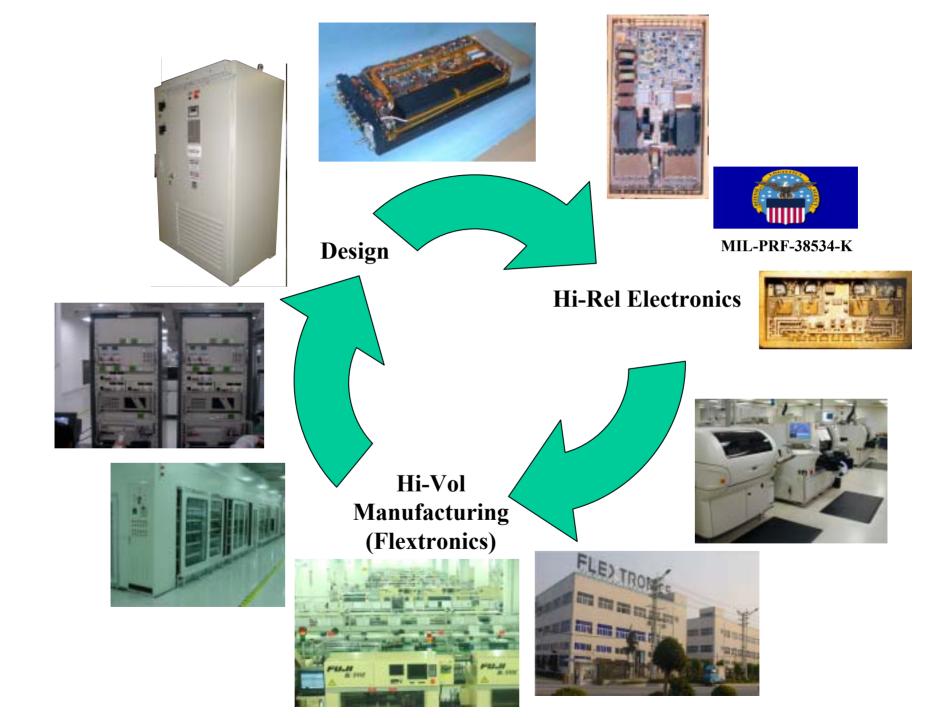

Squeeze Reliability into Design by Reducing FITs

- Reduce Stresses (derate) [Minimize Dissipation First]
- Reduce Component Count
- Eliminate Components
- Alternative Technology

Arrhenius

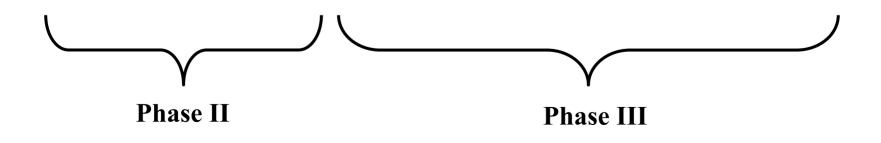
 $k = A * exp^{(-E_a/R*T)}$

 $E_a-Activation \ Energy$


Total Failure Rate/ Component Failure Rate

Typical Parts Derating

COMPONENT	APPLIED VOLTAGE	POWER	MAXIMUM TEMPERATURE
Film Resistors, Thermistors	80% rated	75% rated	125°C (150°C rated)
Metal Sense Resistors	N/A	75% rated	125°C (170°C rated)
Power Semiconductors	80% rated VGS, BVBEO	Observe temperature derating	125°C (Tj max; 150-175°C rated)
Signal Level Discretes	80% rated (if applicable)	75% Power, forward current, surge current	125°C (Tj max; 150-175°C rated)
Ceramic Capacitors	Continuous: 80% rated Peak: 100% rated	N/A	Self Heating <5°C, (125°C case temp rated)
Tantalum Capacitors	Continuous: 33% rated Peak/reverse: 50% rated	75% of rated ripple current	125°C max case; (170°C Tg)
РСВ	Observe UL spacing for ISO barrier	N/A	120°C (135°C Tg); 125°C (170°C Tg)
Optocouplers	80% rated	75% rated forward current	110°C max case
Linear/Analog	80% rated	80% rated Pdiss	125°C (Tj max)
IC - Logic	80% rated	80% rated Pdiss	125°C (Tj max)
IC - ASIC/uP	80% rated	80% rated Pdiss	125°C (Tj max)
IC - CMOS	80% rated	80% rated Pdiss	125°C (Tj max)
IC - Bipolar	80% rated	80% rated Pdiss	125°C (Tj max)
Fuses	100% rated	80% rated current	75% I ² t rating


System Approach to Increasing Reliability/Service-Life

"Disciplines/Skills/Stages/Phases/"		Impact of Weak Components		
		Ceramic Caps	Electrolytic	
•	Power Circuit Topology		*	
•	Component Life/Reliability	*	*	
•	Control		*	
•	Hardware	*	*	
•	Software		*	
•	Packaging	*	*	
•	Thermal	*	*	
•	Passives (Magnetics/Capacitors)	*	*	
•	Design for Manufacturing	*		
•	Transition to Manufacturing	*		

Project Status

Concept	Design	PROOF OF	PROOF OF	Manufacturing
Design	Verification	DESIGN	MANUFACTURING	Integration
 Generate electrical specification Review Performance requirements Design Simulation Schematic Qualify new components Breadboard Prelim thermal analysis 	testing • Worst-case	 Build 10 units & electrically characterize Verify electrical performance Verify component stress analysis Statistical variations Thermal management analysis and imaging HALT/HASS testing Complete datasheet 	 25 unit Mfg. run ATE testing Yield analysis Validate and finalize manufacturing processes 1000 hour life test Qualification testing (humidity, vibration, DMT, power thermal cycling, thermal and mechanical shock) Certification (UL, FCC,) 	 Processes transfer Full documentation release (SCD's, BOM, processes, procedures, etc.) Release Qualification reports Release final datasheet Transfer units to Finished Goods

Future Directions

≻Higher E_a

- Active Devices
- Passive Devices
- Packaging
- Improved Thermals
- Physical/Electrical Interfaces
- Control (Build on DeadBeat ...)
- Fault Tolerance (Components, Circuits, Systems)
 - Paralleling for robustness and performance

3—5 year horizon

SiC, GaN, ... Nanocrystalline, ... Diamond Like Film, ... Dielectrics, Dry Polymer, ... High T plastics, ...