Capacitor Technologies: A Comparison of Competing Options

Bruce Tuttle, Sandia National Laboratories Albuquerque, NM

DOE Hi-Tech Inverter Meeting Baltimore , Maryland October 13, 2004

Acknowledgments

- Technical and programmatic discussions with Mike Lanagan of Penn State, Greg Smith, Frank Zollner of GM, Gilles Terzulli, AVX/TPC, David Kaufman, ANL, Gary Crosbie of Ford, Susan Rogers of DOE, Ray Fessler, Biztek Consulting, Matt Ferber and H.T. Lin of ORNL, Kirk Slenes of TPL, Inc, and Eric Mercklein of Brady Corporation have been essential to the development of this program. The authors acknowledge the technical contributions of Gary Zender, Curtis King and Walter Olson.
- Sandia is a multiprogram laboratory operated by Sandia Corporation a Lockheed Martin Company, for the United States Department of Energy Department of Energy under contract DE-ACO4-94AL85000

The Optimum Capacitor for an Inverter is Application Dependent

- Different Inverter Applications
- Description of Different Capacitor Technologies
- Trade-offs of Capacitor Technologies
- Capacitor Inverter Pairs

Types of Inverters and Prioritized Needs

Photovoltaic Inverters:

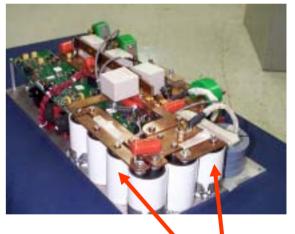
1kW to 10 kW residential 100kW to 300 kW commercial Needs: reliability, cost, size, temperature

Vehicle Inverters:

50 kW to 150 kW; Needs: temperature, size, cost, reliability (fail safe)

Utility Inverters:

10 kW to 500 kW (now)2 MW to 20 MW (future)Needs: reliability, cost, temperature, size


Reduction of DC bus Capacitor Size – Big Impact for Power Electronic Modules

<u>Goal:</u> Develop an improved capacitor technology for power electronic systems in next generation hybrid electric vehicles

Big Payoff: A technology for DC bus capacitors

- replace AI electrolytics
- tech advance applicable to snubber/filter caps

ORNL 150 kW Inverter

Electrolytic capacitors cannot meet the 110°C requirement for DC Bus Capacitors for 2004 Electric Hybrid Vehicles:

- Al electrolytics T_{max} ~ 70°C
- Ta electrolytics V_{max}~125V, high loss at elevated temperatures

Al Electrolytic

Capacitors

Different Capacitor Technologies:

Greatest Impact: DC Bus Capacitors: Largest Reliability concern

- Electrolytic Capacitors: Al and Ta
 - Temperature limitations, reliability
- Polymer Film Capacitors
- Multilayer Ceramic Capacitors
- Ultra capacitors or supercapacitors
- Solid Tantalum Capacitors
 Low voltage, good ESR, expensive
- Ceramic Thin Film Capacitors
 - Not highly commercialized yet
 - Motorola mobile phones

 $- 20 \text{ J/cm}^3!!$

Prius Inverter Polymer Film Capacitors

Strengths of High Voltage Capacitor Families

- Reliability:
 - Multilayer Ceramic (temperature);
 - Polymer film multilayer (soft breakdown behavior)
- Size:
 - Electrolytics
 - Ceramic capacitors
 - Polymer film
- Cost
 - Electrolytic
 - Polymer film (3X less than ceramic)
 - Multilayer ceramic

DOE/EE Tech Team DC BUS CAPACITOR SPECIFICATIONS

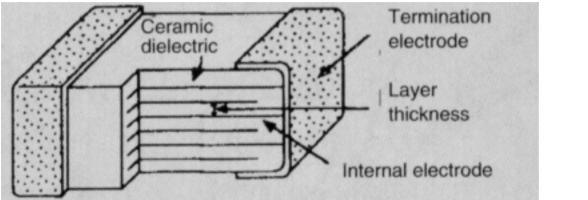
	Property	Now	2010 Tech Team Requirement	
•	CAPACITANCE	240 µF +/-10%	2000 µF+/-10%	
•	VOLTAGE RATING	525 VDC	600 VDC	
•	TRANSIENT VOLTAGE	600 V PEAK 50ms	700 V Peak for 50 ms	
•	LEAKAGE CURRENT		1 mA at rated voltage	
•	DISSIPATION FACTOR	<2%	<1%	
•	ESR, ESL	<3 milliohms	< 3 mohms, <20 nH	
•	RIPPLE CURRENT	90 Amps RMS	250 Amps RMS	
•	TEMPERATURE	-40°C to +85°C	-40°C to 140°C	
•	SIZE; WEIGHT	170cc (1.4 μ F/cm ³)	400 cc (5 µF/cm ³), 10.8 kg; 27 g/cm ³	
			Semikron 1500 μF/1687cm ³ = 0.9 μF/cm ³	
•	COST		\$30	
•	FAILURE MODE	Benign	Benign	
•	Life @80% rated Voltage		>10,000 hr, 200 A rms, +85°C	
			Sandia National	

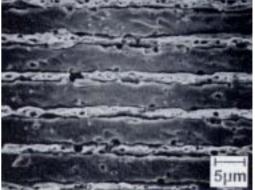
Laboratories

Capacitor Ripple Current / Temperature Capacity

Ripple current is a function of temperature

Capac itor Type	Capac itance (F) Tolerance(%)	Rated Voltage (Volts DC)	Energy Density (J/m ³)	Ripple Current (A rms)	Te mp er ature Range (°C)
Wound	230 <u>+</u> 10%	500	8.01×10^4	48 (25°C)	-55 to +85
Polymer				20.7 (75°C)	
Multilaye r	225 <u>+</u> 10%	500	1.40×10^5	87.91*(25°C)	-55 to +125
Ceramic	(5 @ 4 5µF)			120 (105°C)	
Electrolytic	220	450	2.66×10^5	2.7 (+85°C)	-40 to +105
Alumina					

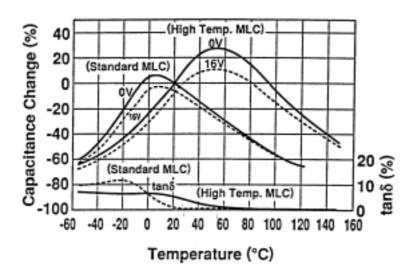

Courtesy of S. Cygan, AVX And M. Lanagan, PSU



Multilayer Ceramic Capacitors

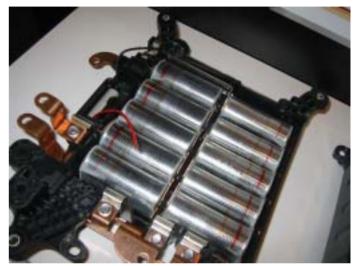
MLCCs

Fabrication: Tape cast layers w/ screen printed electrodes


Large value (> 0.1 mF), high voltage capacitors are available commercially on a limited basis Costly: ~\$100/capacitor (1 mF) Reliability in Inverter environments needs more evaluation

Technical Challenges - multilayer ceramic capacitors

- To minimize cost, dielectrics must be compatible with base metal electrodes (e.g., Cu, Ni) or low Pd content Ag/Pd electrodes:
 low T processing
 resistance to reduction (base metal) ⇒ controlled doping
- Relatively thick dielectric layers: ~100 kV/cm operation \Rightarrow t~30-60 µm (cost - # layers)
- Minimize temperature coefficient of capacitance (TCC) X7R: <±15% variation from -55° to 125°C



Polymer capacitors - a lower cost, lower performance alternative to MLCCs

Materials:

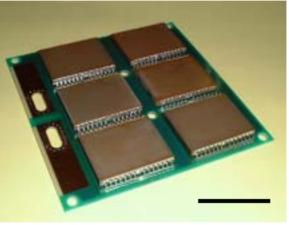
- PPS (polyphenylene sulfide) $\epsilon \sim 3$
- PET (polyester) ε~3.2
- Polyimide ε~3.5
- Teflon

ε~ 2.0

Bank

Dielectric Strength (typical): 2.5-3 MV/cm **Toyota Prius Capacitor** Dielectric loss (typical): < 0.3%Insulation resistance (typical): $> 10^{13} \Omega/cm$ Problems:

- Degradation at elevated temperatures (125°-150°C max)
- Commercial capacitors small values ($\sim 1 \mu F$)

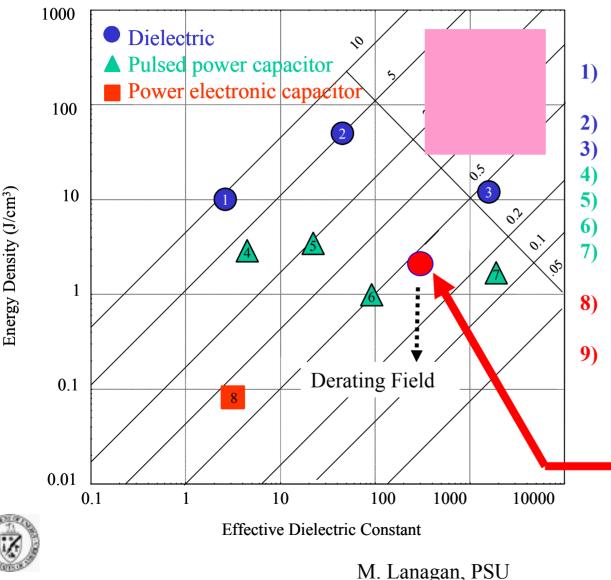

1mF, 4"x4" area \sim 5000 layers

Sandia National Laboratories

Monolithic Multilayer Ceramic Capacitors Have Reduced Size Compared to Polymer Caps

Prius Inverter: Panasonic Polymer Film Capacitor 600 volt rating: 138 μ F in 163 cm³ = 0.85 μ F/cm³

Murata multilayer ceramic capacitor 500 μ F in 15.6 in³ = 255 cm³ 2 μ F/cm³; 5 μ F/cm³ is achievable


5 inches

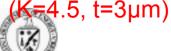
Murata 700 volt, 60 µF MLC BME capacitor

Energy Density Comparison for Dielectric Materials and Capacitors

Biaxially oriented polypropylene Niobium oxide thin film Antiferroelectric/ ferroelectric Polypropylene film capacitor PVDF film capacitor Titania ceramic capacitor Antiferroelectric/ ferroelectric phase switch capacitor Commercial polymer film capacitor

Commercial multilayer ceramic capacitor

> This Study Further improvement Anticipated!



High Volume Production Necessary to Reduce Capacitor Cost

- Class 1000 Clean Room Conditions
- 60" roll widths
- 115 ft. Thermal Chambers
- Superior air flow temperature control more uniform thickness Fewer defects

30 to 60 ft. per minute

two 200 µF capacitors each minute

Brady Corporation, Milwaukee, WI

In-situ video monitored Krypton Thickness monitors - real time feedback

Summary

- Optimum Capacitor for Inverter is Application Specific
- For large capacitors: electrolytic, multilayer polymer and multilayer ceramic appear to be the best commercially available technologies
- Electrolytic capacitors superior in cost, while ceramic capacitors superior with regard to high temperature and reliability

Electric Hybrid Vehicle

• Polymer film capacitors are an intermediate cost, intermediate reliability, soft breakdown alternative

