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The Optimum Capacitor for an Inverter 
is Application Dependent

• Different Inverter Applications
• Description of Different Capacitor 

Technologies
• Trade-offs of Capacitor Technologies
• Capacitor – Inverter Pairs
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Types of Inverters and Prioritized Needs

Photovoltaic Inverters:
1kW to 10 kW residential
100kW to 300 kW commercial
Needs: reliability, cost, size, temperature 

Vehicle Inverters:
50 kW to 150 kW; 
Needs: temperature, size, cost, reliability (fail safe)

Utility Inverters:
10 kW to 500 kW (now) 
2 MW to 20 MW  (future)
Needs: reliability, cost, temperature, size
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Reduction of DC bus Capacitor Size –
Big Impact for Power Electronic Modules

Goal: Develop an improved capacitor technology for power 
electronic systems in next generation hybrid electric vehicles

Capacitors in power electronic modules:
DC bus capacitors: 0.3 - 1 mF
snubber capacitors: 0.1-1.0 µF
filter capacitors: 1-10 µF

Big Payoff: A technology for DC bus capacitors
• replace Al electrolytics
• tech advance applicable to snubber/filter caps

Al Electrolytic 
Capacitors

ORNL 150 kW Inverter

Electrolytic capacitors cannot meet the 110oC requirement
for DC Bus Capacitors for 2004 Electric Hybrid Vehicles:
• Al electrolytics - Tmax ~ 70°C
• Ta electrolytics - Vmax~125V, high loss at elevated temperatures
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Different Capacitor Technologies:
Greatest Impact: DC Bus Capacitors: Largest Reliability concern

• Electrolytic Capacitors: Al and Ta
– Temperature limitations, reliability

• Polymer Film Capacitors
• Multilayer Ceramic Capacitors
• Ultra capacitors or supercapacitors
• Solid Tantalum Capacitors

– Low voltage, good ESR, expensive
• Ceramic Thin Film Capacitors

– Not highly commercialized yet
– Motorola mobile phones
– 20 J/cm3!! 

Prius Inverter Polymer
Film Capacitors
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Strengths of High Voltage 
Capacitor Families

• Reliability:  
– Multilayer Ceramic (temperature); 
– Polymer film multilayer (soft breakdown behavior)

• Size:
– Electrolytics 
– Ceramic capacitors
– Polymer film

• Cost
– Electrolytic
– Polymer film (3X less than ceramic)
– Multilayer ceramic
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DOE/EE Tech Team DC BUS 
CAPACITOR SPECIFICATIONS

• CAPACITANCE 240 µF +/-10%                      2000 µF+/-10%     
• VOLTAGE RATING 525 VDC 600  VDC 
• TRANSIENT VOLTAGE    600 V PEAK 50ms                 700 V Peak for 50 ms                  
• LEAKAGE CURRENT 1 mA at rated voltage
• DISSIPATION FACTOR               <2% <1%
• ESR, ESL <3 milliohms                       < 3 mohms, <20 nH            
• RIPPLE CURRENT 90 Amps RMS                     250 Amps RMS 
• TEMPERATURE                -40oC to +85oC -40oC to 140oC
• SIZE; WEIGHT 170cc  (1.4 µF/cm3) 400 cc (5 µF/cm3), 10.8 kg; 27 g/cm3

Semikron 1500 µF/1687cm3 = 0.9 µF/cm3

• COST $30
• FAILURE MODE Benign Benign
• Life @80% rated Voltage >10,000 hr, 200 A rms, +85oC

Property                       Now 2010 Tech Team Requirements
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Capacitor Ripple Current / 
Temperature Capacity 

Ripple current is a function  
of temperature

Courtesy of S. Cygan,  AVX
And M. Lanagan, PSU

Capac itor
Type

Capac itance
( F)
Toleran ce(%)

Rated
Voltage
(Volts DC)

Energy
Den si ty
(J /m 3)

Ripple  Cu rren t
(A rms )

Te mp erature
Range (oC)

W ound
Polymer

230 + 10% 500 8.01 x 104 48 (25°C)
20.7 ( 75oC)

-55 to +85

Multilaye r
Cerami c

225 + 10%
(5 @ 4 5µF )

500 1.40 x 105 87.91* ( 25°C )
120 (105°C)

-55 to +125

El ect rolytic
Alumina

220 450 2.66 x 105 2.7  (+85oC) -40 to +105
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Multilayer Ceramic Capacitors

MLCCs

Fabrication: Tape cast layers w/ screen printed electrodes

Large value (> 0.1 mF), high voltage capacitors are 
available commercially on a limited basis

Costly: ~$100/capacitor (1 mF)
Reliability in Inverter environments needs 
more evaluation
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Technical Challenges - multilayer ceramic capacitors

• To minimize cost, dielectrics must be compatible with base metal 
electrodes (e.g., Cu, Ni) or low Pd content Ag/Pd electrodes: 

low T processing
resistance to reduction (base metal) ⇒ controlled doping

• Relatively thick dielectric layers: 
~100 kV/cm operation ⇒ t~30-60 µm (cost - # layers)

• Minimize temperature coefficient of capacitance (TCC) 
X7R:  <±15% variation from -55° to 125°C
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Polymer capacitors - a lower cost, 
lower performance alternative to MLCCs

Materials:
• PPS (polyphenylene sulfide)  ε~3
• PET (polyester) ε~3.2
• Polyimide ε~3.5
• Teflon ε~ 2.0

Dielectric Strength (typical): 2.5-3 MV/cm
Dielectric loss (typical): < 0.3%
Insulation resistance (typical): > 1013 Ω/cm
Problems:
• Degradation at elevated temperatures (125°-150°C max) 
• Commercial capacitors small values (~ 1µF)  

1mF, 4”x4”area  ~ 5000 layers 

Toyota Prius Capacitor
Bank
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Monolithic Multilayer Ceramic Capacitors 
Have Reduced Size Compared to Polymer Caps

Prius Inverter:
Panasonic Polymer Film Capacitor
600 volt rating:
138 µF in 163 cm3 = 0.85 µF/cm3

Murata multilayer ceramic capacitor
500 µF in 15.6 in3 = 255 cm3

2 µF/cm3 ; 5 µF/cm3 is achievable

5 inches

Murata 700 volt, 60 µF 
MLC BME capacitor
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Energy Density Comparison for 
Dielectric Materials and Capacitors
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1) Biaxially oriented 
polypropylene

2) Niobium oxide thin film
3) Antiferroelectric/ ferroelectric
4) Polypropylene film capacitor
5) PVDF  film capacitor
6) Titania ceramic capacitor
7) Antiferroelectric/ ferroelectric 

phase switch capacitor 
8) Commercial polymer film 

capacitor
9) Commercial multilayer 

ceramic capacitor

This Study
Further improvement
Anticipated!

Derating Field

M. Lanagan, PSU
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High Volume Production Necessary 
to Reduce Capacitor Cost

Class 1000 Clean
Room Conditions
60” roll widths
115 ft. Thermal 
Chambers
Superior air flow -
temperature control
more uniform thickness
Fewer defects
30 to 60 ft. per minute

two 200 µF capacitors
each minute
(K=4.5, t=3µm)

Brady Corporation, Milwaukee, WI

In-situ video monitored Krypton 
Thickness monitors - real time feedback  
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Summary

• Optimum Capacitor for Inverter is Application 
Specific

• For large capacitors: electrolytic, multilayer 
polymer and multilayer ceramic appear to be the 
best commercially available technologies

• Electrolytic capacitors superior in cost, while 
ceramic capacitors superior with regard to high 
temperature and reliability

• Polymer film capacitors are an intermediate cost, 
intermediate reliability, soft breakdown alternative

Electric Hybrid
Vehicle
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