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Outline

* How to measure “PV Penetration”

* What is “High PV Penetration”

* Thoughts about “Penetration Limits”

e System Operations with High Penetration

— Distribution system issues
— Bulk system issues

 Conclusions

* Definitions
— DG = distributed generation; VG = variable generation

Utility/Lab Workshop, Nov. 2010, Tempe, AZ



Definition of PV Penetration Level

* From the distribution system point of view
— PV or DG Capacity / Peak Load of line section or feeder*
— PV or DG Capacity / Minimum Load
— PV or DG Capacity / Transformer or Station Rating
* From the bulk system point of view
— Annual PV Energy / Annual Load Energy*
— PV or VG Capacity / Peak Load or Minimum Load
e Often used in policy and procedures

— E.g., RPS targets, interconnection screens

* Most commonly used
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Definition of PV Penetration Level

Example for distribution system

_ Peak / Min (MW) Penetration for 1 MW PV

Feeder Load 3/091 33% /111%
Station Load 10/31 10% / 33%
Station Rating 20 5%

T Minimum Load may be in the range of 20% to 40% of Peak Load

Example for bulk system

Peak/Min (GW) | Energy (GWh) | By Capacity By Energy 3
6%

Utility (LSE) 5/21 24,0001 20% / 50%
Balancing Area 50/ 20?2 240,000 2 2% [/ 5% 0.6%
le.g., SDGE, 2009 Z2e.g., CAISO, 2009 3Assumes 16% annual capacity factor
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What is High PV Penetration?

* |t depends!

— With respect to what part of the system?
* Feeder or Local Grid? >50% by capacity?
« BA/Market? Interconnection? >5% by energy?

— Assuming Business-As-Usual or Best Practices?
* Technology, Standards, Procedures, Market, Regulatory...

* High penetration is a concern when...

— There is a technical risk that system performance and
reliability would be objectionable and

— Cost of mitigation, allocation would be unreasonable
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Are There Penetration Limits?

e There are no absolute technical limits

— Cost and technical risk may increase

System A System B

Cost of or Risk

k P System B with

evolving best practices

Penetration Level
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Distribution Operations Issues

* Possible impacts depend on factors including...
— Feeder characteristics impedance
— Penetration level, DG location on feeder
— Type of voltage control and protection
— Load characteristics

* Most common operations concerns include...
— Customer voltage regulation, power quality

— Excessive operation of voltage control equipment
— Protection
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Voltage Control

* High voltage at end of feeder with high PV
generation at the end of a long feeder
— Operate PV generators at lower power factor
— Adjust LTC/VR settings; adjust capacitor schedule

Utility | | Reverse Flow | |
Substation < %

LTC/VR

Large PV generation at end of feeder

_________ 1 ANSI C.84.1
range

Voltage




Voltage Control

* Low voltage at end of long feeder due to large PV
ahead of load

— Account for PV injection in LTC/VR control logic

— PV on dedicated feeder
— Install VR ahead of PV SOy T P End of Fesder

1
Inverter
U Large PV

Voltage Profile at Peak Load (no PV)

Voltage profile at Peak Load (with large PV)

Voltage

e T i

ANSI Range A Lower Limit

Source: DOE RSI study, “Advanced Grid
Planning and Operations” (EPRI) Substation End of Feeder
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Voltage Control

* Excessive LTC/VR tap activity or flicker due to PV
variability (centralized PV, long feeder)

— Review and adjust VR/LTC settings (dead band, timer)

— Enable PV inverters to provide dynamic var support,
passively or actively

Variable PF based on PV Output

Real Power

Volt/Var Droop Characteristic 1 7 nveter

_____

N Q1

Power

System ‘:.foltaga

Reactive Power Produced by Inverter.

/ Mirror image of real power (gain=0.3)

e s WVJWNN\

VARs Generated

y Inductive

Source: EPRI/Sandia Inverter

Interoperability Project Time
P yrTol DOE RSI study, “Advanced Grid Planning and Operations”
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Voltage Control

e Voltage issues are much less problematic in short
urban feeders, even at very high penetration!
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Other Distribution Operations Issues

* Other power quality

* Protection and islanding

— Relay desensitization, nuisance tripping
* Reduction in fault current from utility source, reverse flow

— Risk of islanding

e Customer exposure to high voltages (ferro-resonance)

* Recloser coordination
* Management and control
— Visibility and controllability of distributed PV

— Interoperability, Cyber-security
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Nuisance Tripping

Inverter fault contribution is relatively small, but
could cause unnecessary relay operation

— Review reverse current protection scheme
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DG Connection Standards

* |EEE 1547 Voltage and Frequency Tolerance

Voltage Range Max. Clearing Frequency Range Max. Clearing
(% Nominal) Time (sec) * (Hz) Time (sec)

V < 50% 0.16 f>60.5 0.16
50% =V < 88% 2.0 f<57.0* 0.16
110% <V < 120% 1.0 59.8 <f<57.0** Adjustable (0.16
V2 120% 0.16 and 300)
(*) Maximum clearing times for DER < 30 kW, (*) 59.3 Hzif DER =30 kW
Default clearing times for DER > 30 kW (**) For DER >30 KW

* Additional disconnection requirements
— Cease to energize for faults on the Area EPS circuit
— Cease to energize prior to circuit reclosure

— Detect island condition and cease to energize within 2 seconds
of the formation of an island (“anti-islanding”)
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DG Connection Standards

* Other applicable codes and standards

e ciaran.

Voltage Regulation Maintain service voltage within ANSI C84 Range A (+/-5%)
Voltage control Not permitted (IEEE 1547)
Flicker Maximum Borderline of Irritation Curve (IEEE 1453)

<5% THD: <4% below 11t <2% for 11th — 15th <1.5% for 17th

Harmonics — 215t 0.6% for 23rd — 33rd; <0.3% for 337 and up (IEEE 519)

Output power factor 0.85 lead/lag or higher (equipment

Power Factor typically designed for unity power factor)
Direct Current Injection <0.5% current of full rated RMS output current (IEEE 1547)

Synchronization and  Dedicated protection & synchronization equipment required,
Protection except smaller systems with utility-interactive inverters
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Impact on Bulk System Operations

* |Impacts depend on factors such as...
— Penetration level

— Aggregated output characteristics (short-term, daily,
seasonal variability)

— System characteristics (size, maneuverability of
generation resources, market flexibility)

* Most common operations concerns include...
— Increase in cost (regulation, ramping, scheduling, UC)
— Degradation of Balancing Area performance
— Wear-and-tear on regulating units
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Integration Cost ($/MWh)
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Possible Increase in Operating Cost

* There are many effective strategies to mitigate
additional variability; some
— Larger BA footprint, better cooperation among BAs
— Access to formal and flexible markets
— Application of forecasting

— Active power controls

— Plan for flexibility

Absolute power limit Delta power limit

— Energy storage ff/-\ " Nomina
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Possible Increase in Operating Cost

e System with high penetration PV looks different
— Daytime output makes issues less problematic
— Generation flexibility is key for High Penetration
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Other Bulk System Operation Issues

* Sympathetic tripping of PV generation due to
transmission disturbances

— Voltage and frequency tolerance standards
e Voltage stability (locally)
— Reactive power standards

* Frequency performance due to displacement of
inertia (with very high penetration of inverters)

— Active power controls—market-based incentives?
— Synthetic inertia
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Sympathetic PV Generation Tripping

* Voltage and Fre2quency ride-through standards
— Proposed NERC PRC-024
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Examples of Very High PV Penetration

High Penetration on Feeder

!?_'!"*I.L‘ ¥ . ;

Ota City, Japan: 2 MW PV on single feeder (553
homes, 3.85 kW average PV system)

Lanai , Hawaii: 1.2 MW PV system on 4.5 MW island
grid supplied by old diesel generators



Examples of Very High Penetration

Penetration level by energy
approaching 15%

Instantaneous penetration level
reaches 50%
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Conclusions

e Penetration Levels

— Different definitions for different purposes

 There are no absolute “penetration limits”

— Issues boil down to cost and risk

* Technical and process challenges are real
— Embracing best practices and change is the key

— Technology and standards need to evolve
constructively

— Procedures and policies should keep up!
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