

Energy Efficiency & Renewable Energy

Utility/Lab Workshop on PV Technology and Systems

November 8-9, 2010 Tempe, Arizona

Grid Operations and High Penetration PV Abraham Ellis (aellis@sandia.gov) Sandia National Laboratories

ELECTRIC POWER RESEARCH INSTITUTE

EF

Delivering more than power.™

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- How to measure "PV Penetration"
- What is "High PV Penetration"
- Thoughts about "Penetration Limits"
- System Operations with High Penetration
 - Distribution system issues
 - Bulk system issues
- Conclusions
- Definitions
 - DG = distributed generation; VG = variable generation

Definition of PV Penetration Level

- From the distribution system point of view
 - PV or DG Capacity / Peak Load of line section or feeder*
 - PV or DG Capacity / Minimum Load
 - PV or DG Capacity / Transformer or Station Rating
- From the bulk system point of view
 - Annual PV Energy / Annual Load Energy*
 - PV or VG Capacity / Peak Load or Minimum Load
- Often used in policy and procedures
 - E.g., RPS targets, interconnection screens

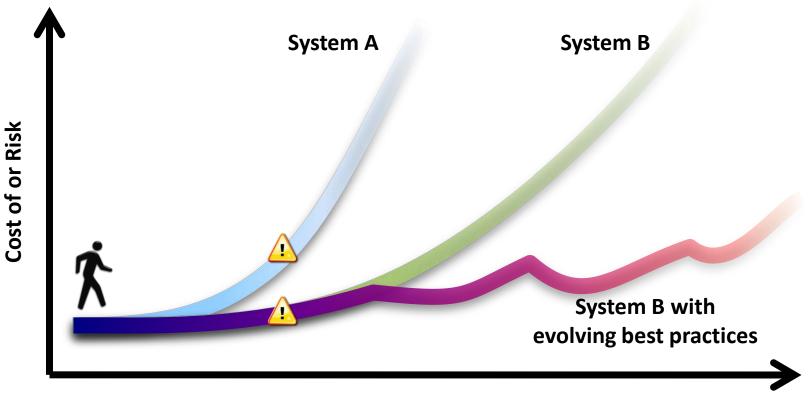
Definition of PV Penetration Level

• Example for distribution system

	Peak / Min (MW)	Penetration for 1 MW PV
Feeder Load	3 / 0.9 ¹	33% / 111%
Station Load	10 / 3 ¹	10% / 33%
Station Rating	20	5%

¹ Minimum Load may be in the range of 20% to 40% of Peak Load

• Example for bulk system

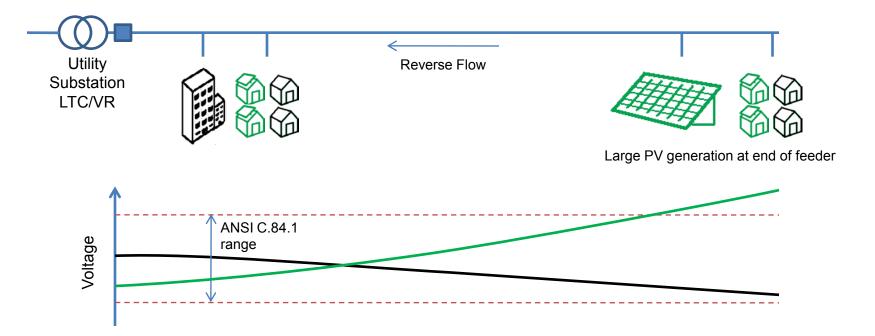

	Load		Penetration for 1 GW PV	
	Peak/Min (GW)	Energy (GWh)	By Capacity	By Energy ³
Utility (LSE)	5 /2 ¹	24,000 ¹	20% / 50%	6%
Balancing Area	50 / 20 ²	240,000 ²	2% / 5%	0.6%
¹ e.g., SDGE, 2009 ² e.g., CAISO, 2009 ³ Assumes 16% annual capacity factor				

What is High PV Penetration?

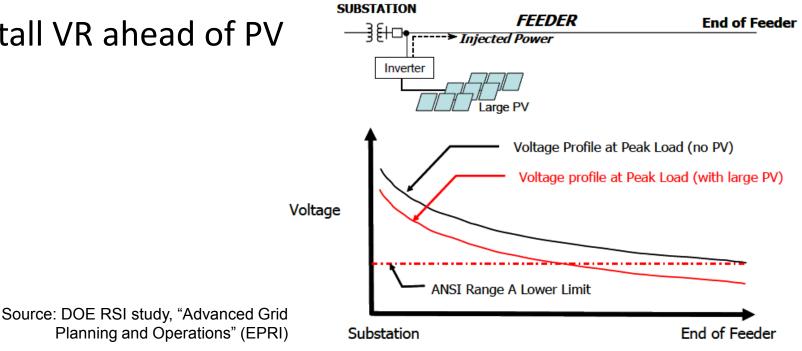
- It depends!
 - With respect to what part of the system?
 - Feeder or Local Grid? >50% by capacity?
 - BA/Market? Interconnection? >5% by energy?
 - Assuming Business-As-Usual or Best Practices?
 - Technology, Standards, Procedures, Market, Regulatory...
- High penetration is a concern when...
 - There is a technical risk that system performance and reliability would be objectionable **and**
 - Cost of mitigation, allocation would be unreasonable

Are There Penetration Limits?

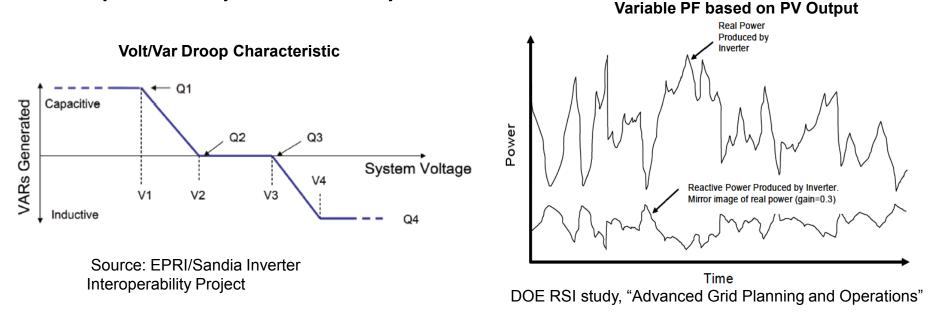
- There are no <u>absolute</u> technical limits
 - Cost and technical risk may increase



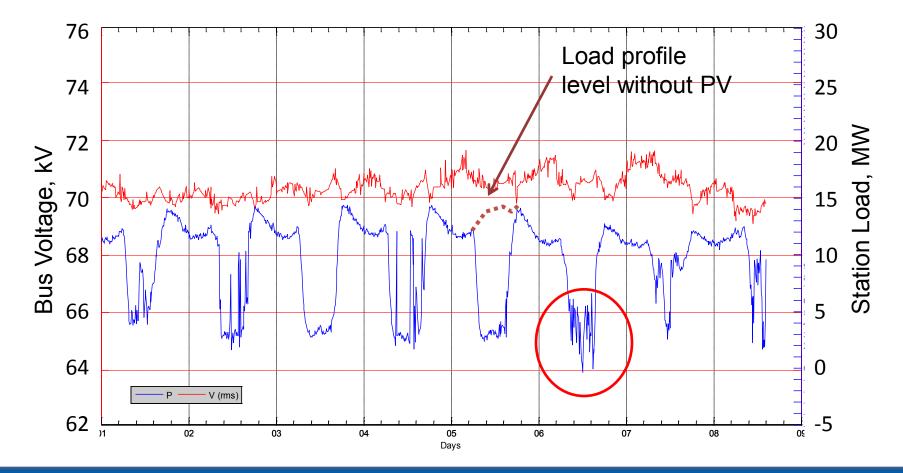
Penetration Level


Distribution Operations Issues

- Possible impacts depend on factors including...
 - Feeder characteristics impedance
 - Penetration level, DG location on feeder
 - Type of voltage control and protection
 - Load characteristics
- Most common operations concerns include...
 - Customer voltage regulation, power quality
 - Excessive operation of voltage control equipment
 - Protection


- High voltage at end of feeder with high PV generation at the end of a long feeder
 - Operate PV generators at lower power factor
 - Adjust LTC/VR settings; adjust capacitor schedule

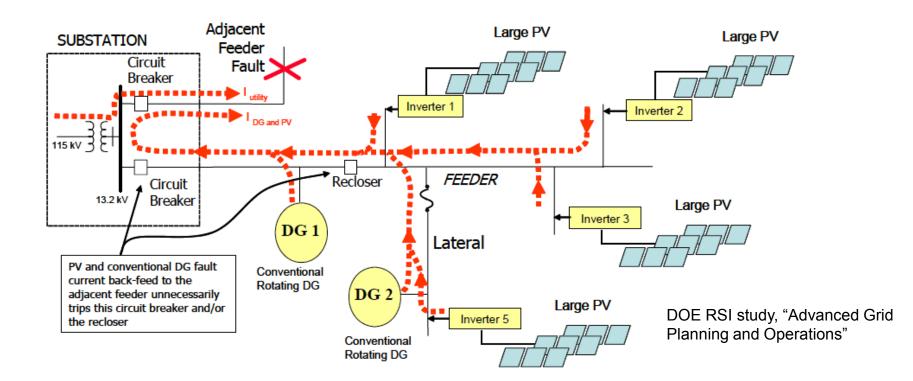
- Low voltage at end of long feeder due to large PV ahead of load
 - Account for PV injection in LTC/VR control logic
 - PV on dedicated feeder
 - Install VR ahead of PV



- Excessive LTC/VR tap activity or flicker due to PV variability (centralized PV, long feeder)
 - Review and adjust VR/LTC settings (dead band, timer)
 - Enable PV inverters to provide dynamic var support, passively or actively

Utility/Lab Workshop, Nov. 2010, Tempe, AZ

 Voltage issues are much less problematic in short urban feeders, even at very high penetration!



Other Distribution Operations Issues

- Other power quality
- Protection and islanding
 - Relay desensitization, nuisance tripping
 - Reduction in fault current from utility source, reverse flow
 - Risk of islanding
 - Customer exposure to high voltages (ferro-resonance)
 - Recloser coordination
- Management and control
 - Visibility and controllability of distributed PV
 - Interoperability, Cyber-security

Nuisance Tripping

- Inverter fault contribution is relatively small, but could cause unnecessary relay operation
 - Review reverse current protection scheme

DG Connection Standards

IEEE 1547 Voltage and Frequency Tolerance

Voltage Range (% Nominal)	Max. Clearing Time (sec) *	
V < 50%	0.16	
$50\% \le V < 88\%$	2.0	
110% < V < 120%	1.0	
V ≥ 120%	0.16	

(*) Maximum clearing times for DER ≤ 30 kW; Default clearing times for DER > 30 kW
 Frequency Range (Hz)
 Max. Clearing Time (sec)

 f > 60.5
 0.16

 f < 57.0 *</td>
 0.16

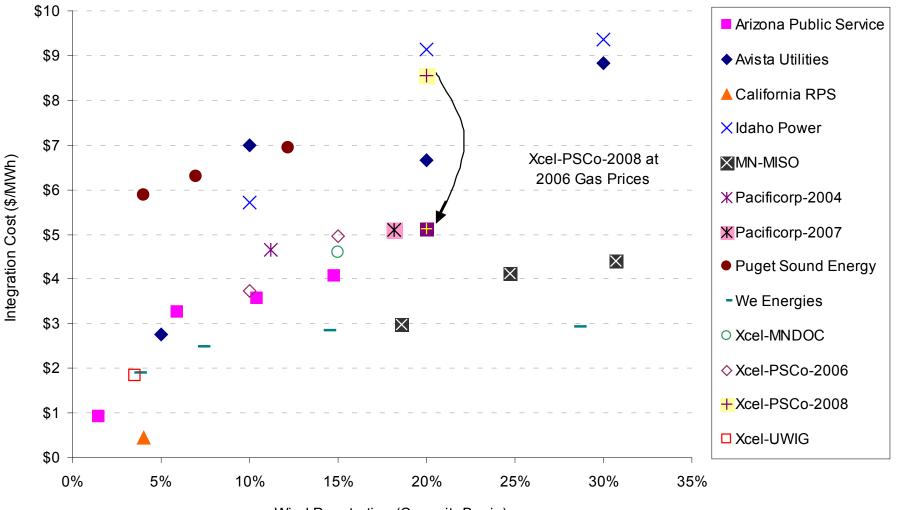
 59.8 < f < 57.0 **</td>
 Adjustable (0.16 and 300)

(*) 59.3 Hz if DER \leq 30 kW

(**) For DER > 30 KW

- Additional disconnection requirements
 - Cease to energize for faults on the Area EPS circuit
 - Cease to energize prior to circuit reclosure
 - Detect island condition and cease to energize within 2 seconds of the formation of an island ("anti-islanding")

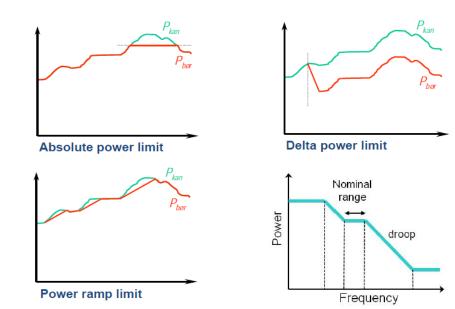
DG Connection Standards


Other applicable codes and standards

	Requirement
Voltage Regulation	Maintain service voltage within ANSI C84 Range A (+/-5%)
Voltage control	Not permitted (IEEE 1547)
Flicker	Maximum Borderline of Irritation Curve (IEEE 1453)
Harmonics	<5% THD; <4% below 11^{th} ; <2% for $11^{th} - 15^{th}$, <1.5% for $17^{th} - 21^{st}$; 0.6% for $23^{rd} - 33^{rd}$; <0.3% for 33^{rd} and up (IEEE 519)
Power Factor	Output power factor 0.85 lead/lag or higher (equipment typically designed for unity power factor)
Direct Current Injection	<0.5% current of full rated RMS output current (IEEE 1547)
Synchronization and Protection	Dedicated protection & synchronization equipment required, except smaller systems with utility-interactive inverters

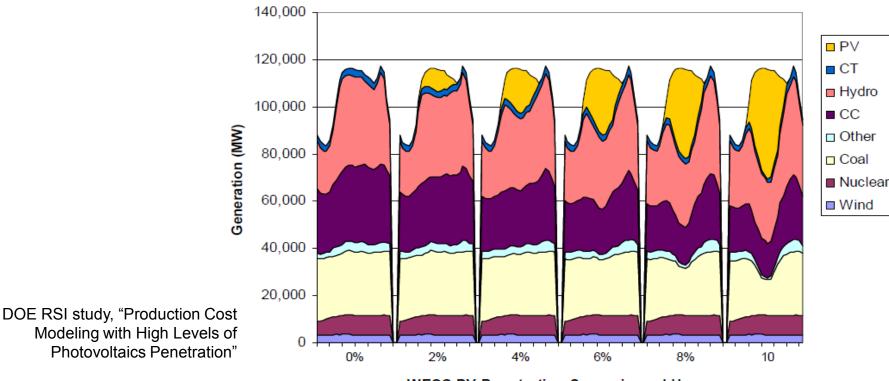
Impact on Bulk System Operations

- Impacts depend on factors such as...
 - Penetration level
 - <u>Aggregated</u> output characteristics (short-term, daily, seasonal variability)
 - System characteristics (size, maneuverability of generation resources, market flexibility)
- Most common operations concerns include...
 - Increase in cost (regulation, ramping, scheduling, UC)
 - Degradation of Balancing Area performance
 - Wear-and-tear on regulating units


Increase in Operating Cost

Wind Penetration (Capacity Basis)

Possible Increase in Operating Cost

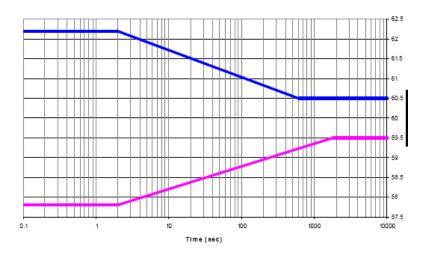

- There are many effective strategies to mitigate additional variability; some
 - Larger BA footprint, better cooperation among BAs
 - Access to formal and flexible markets
 - Application of forecasting
 - Active power controls
 - Plan for flexibility
 - Energy storage

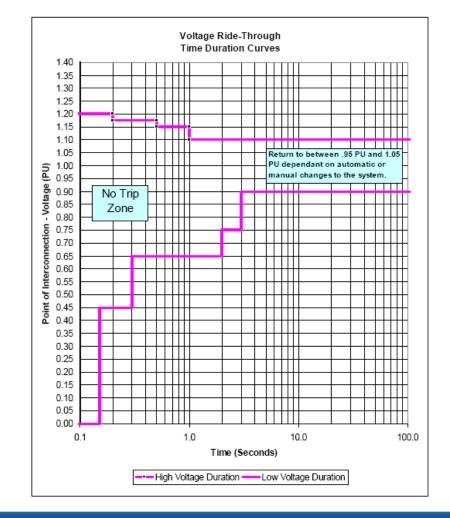
Source: Energinet.dk

Possible Increase in Operating Cost

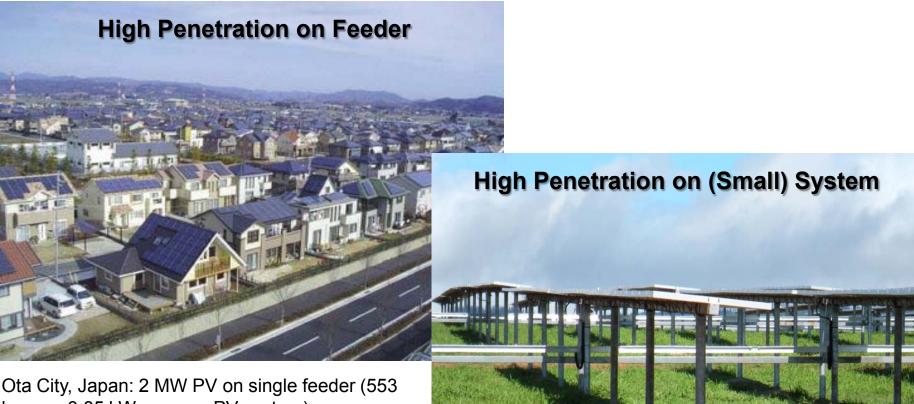
- System with high penetration PV looks different
 - Daytime output makes issues less problematic
 - Generation flexibility is key for High Penetration

WECC PV Penetration Scenario and Hour


Other Bulk System Operation Issues

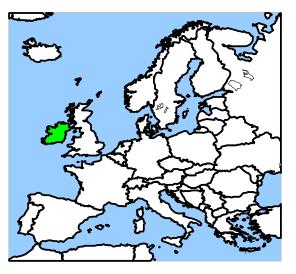

- Sympathetic tripping of PV generation due to transmission disturbances
 - Voltage and frequency tolerance standards
- Voltage stability (locally)
 - Reactive power standards
- Frequency performance due to displacement of inertia (with very high penetration of inverters)
 - Active power controls—market-based incentives?
 - Synthetic inertia

Sympathetic PV Generation Tripping


- Voltage and Fre2quency ride-through standards
 - Proposed NERC PRC-024
 - Technology-neutral (applies to all generators)
 - What about DG?

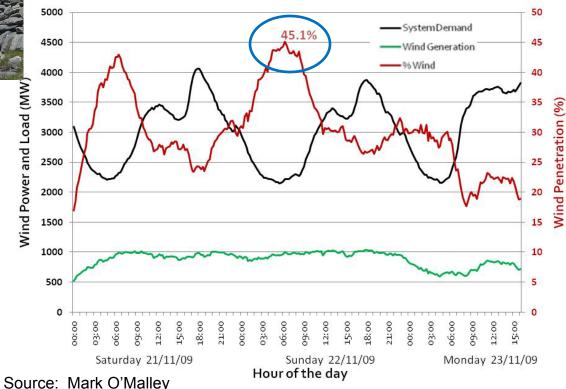
OFF NOMINAL FREQUENCY CAPABILITY CURVE

Examples of Very High PV Penetration


homes, 3.85 kW average PV system)

Lanai, Hawaii: 1.2 MW PV system on 4.5 MW island grid supplied by old diesel generators

Examples of Very High Penetration



Ireland: >1 GW wind capacity in 7 GW peak load island system

Penetration level by energy approaching 15%

Instantaneous penetration level reaches 50%

Conclusions

Penetration Levels

Different definitions for different purposes

- There are no absolute "penetration limits" — Issues boil down to cost and risk
- Technical and process challenges are real
 - Embracing best practices and change is the key
 - Technology and standards need to evolve constructively
 - Procedures and policies should keep up!