

Low Cost Heliostat Development

DOE – CSP Program Review May 17, 2011

Stephen Kusek HiTek Services, Inc. 7234 Hwy. 431 South Owens Cross Roads AL, 35763 (256)539-0380 kusek@hitek-services.com

Presentation Outline

- Project
 - Description
 - Objectives
 - Impact
 - Challenges
 - Heliostat Size Analysis
 - Heliostat Development
 - Key Results
 - Summary
 - Future Work

Project Description

- This project will develop a methodology and provide an example analysis to find an optimal heliostat size using minimal heliostat cost as the objective function for a 100MW_e baseload solar electric power plant. A heliostat of this size will be designed, fabricated, and tested incorporating lessons learned from the 1970's to today.
- There are two primary study areas:
 - 1. Heliostat Size Analysis
 - 2. Heliostat Development
 - 1. Reflector
 - 2. Drive Unit
 - 3. Tracking Control

Project Objectives

The four primary objectives are:

- Develop the means for determining the optimal size of a heliostat in terms of applied forces, moments, manufacturing learning curve effects, O&M, and optical efficiency,
- 2. Develop a low-cost, long-life, monolithic composite mirror support structure,
- 3. Develop a low-cost, long-life azimuth chain drive , and
- 4. Develop a low-cost, long-life tracking control subsystem.

Project Impact

- Demonstrating a Methodology for Determining a Minimal-Cost Heliostat
- Comparing the Results to Past Work to Verify a Shift in Heliostat Size Expectation
- Demonstrating the Performance and Estimating the Cost of a Heliostat of a Size Suggested by this Methodology

Challenges

- Understanding the "Real" Details Behind Previous Cost Studies
- Developing Well Founded Cost Algorithms
- Keeping Heliostat Development Costs Affordable with an Unknown Heliostat Size at the Program Start
- Scaling Up Our Previous Drive Work
- Affordably Controlling this Many Heliostats

Heliostat Size Analysis

- Heliostats of various sizes have been built since the early 1970's
- Each overall solar plant architecture brings some generic and some specific requirements
- The general trend has been to build larger and larger heliostats
- The goal of this task is to ascertain a heliostat size that minimizes cost for a generic 100MW_e baseload central receiver plant

Analysis Approach

- Start by using previous studies and existing data that are recast into three cost categories
 - 1. Hardware with costs that vary linearly with area (e.g., mirrors)
 - 2. Hardware with costs that vary with the three-halves power law (e.g., structure)
 - 3. Hardware with fixed costs no matter the heliostat size (e.g., encoders, control PCB)
- Once that various heliostat elements are assigned to their category, and costs are determined as a function of area, calculate a cost for various heliostat sizes
- Perform an initial sizing analysis to set an early heliostat size that can be used to initiate subsequent heliostat design tasks
- Add cost and model fidelity as project progresses to refine the size computation

Cat. 1 – Constant \$ Per Unit Area

- Primary Cost Driver for this Category
 - Mirror and mirror substrate
 - Typically the mirror is a glass second surface mirror and the mirror is bonded either to a substrate or directly to a support structure
 - As an example, the ATS heliostat used a 1mm mirror bonded to a 3mm glass substrate. Here the mirror, adhesive, and glass substrate costs are all essentially constant per unit area for a given plant size.

The mirrors are an important cost factor but not the major cost parameter

Cat. 2 – Size Dependant Costs

- Primary Cost Drivers for this Category
 - Reflector Support Structure
 - Drives
 - Drive Motors
 - Pedestal
 - Foundation
 - Net Present Value of Operations & Maintenance Costs

This is the major cost category

Cat. 3 – Fixed Cost

- Primary Cost Drivers for this Category
 - Processors
 - Encoders
 - Limit Switches

Minor cost category until the heliostat size becomes "small"

Initial Analysis

- Use cost data from the Sandia Heliostat Cost Reduction Study (June 2007)
- Recast the published costs into the three cost categories
- Create the cost equations as a function of area so that the cost per unit area is \$167.50 for a 148m² heliostat
- Create an installed cost per unit area curve versus heliostat area
- Reallocate costs between categories and calculate changes

Sample Cost – Table 5

ALLOCATION FOR 5000 UNITS/VD

ALLOCATION FOR 5000 UNITS/YR			CA	TEGORY 1	CAT	EGORY 2		CATEGORY 3
	148	m2 ATS	С	osts/Area	C	osts/Area	Co	sts/Area That Are
	Gla	ss/Metal	That.	Are Constant	D	ependent		Constant for
	Helio	ostat Price	In	respective	on	Imposed		Each Heliostat
	Per 1	Unit Area	of Hel	iostat Area or	ľ	Aoment	In	respective of Area
			Numbe	er of Heliostats			(i.e., d	epend on number)
Mirror Module	\$	26.50	\$	26.50				
Support Structure	\$	23.32			\$	23.32		
Drive	\$	48.65			\$	48.65		
Drive Electrical	\$	2.67			\$	1.33	\$	1.34
Controls	\$	2.09			\$	1.05	\$	1.05
Pedestal	\$	18.66			\$	18.66		
Field Wiring	\$	8.14	\$	2.71	\$	2.71	\$	2.71
Foundation	\$	2.56			\$	2.56		
Field Alignment/Checkout	\$	6.97	\$	3.49			\$	3.49
Total Installed Cost/Area	\$	139.56	\$	32.70	\$	98.28	\$	8.58
Overhead/Profit (20%)	\$	27.91	\$	6.54	\$	19.66	\$	1.72
Total Installed Price/Area	\$	167.47	\$	39.24	\$	117.93	\$	10.29
Fraction Category to Total Cost				0.234		0.704		0.061
5000 ATC 140 2 II-Bantata								

5000 ATS 148 m2 Heliostats

HiTek Services, Inc.

Data Based Upon Sandia Report SAND2007-3293, June 2007

Initial Sizing Results

HiTek Services, Inc.

Minimum Cost Table 5 Values ~40m² Table 6 Values ~30m² Table 7 Values ~20m²

Heliostat Development

- Plant Design
 - 100MW_e
 - 75% Capacity Factor
- Assumptions
 - 10% System Efficiency
 - 7.5 kWhr/m²/day Average Daily Energy To Mirrors
 - 10% Startup/Shutdown Energy Loss
- Total Mirror Area Calculated at 2.7 Million m²

Quick Computation for Needed Mirror Area

How Many Heliostats?

Design Assumptions

- 1. Constant Mirror Size (about 5' x 5')
- 2. Stay "Near" a 1.2 Aspect Ratio

Design-1		
Mirror Wide	3	
Mirrors High	2	
Heliostat Width	4.68 m	
Heliostat Height	2.95 m	
Aspect Ratio	1.59	
Heliostat Area	13.8 m2)
Number of Heliostats	193237	

Design-3	
Mirror Wide	5
Mirrors High	4
Heliostat Width	7.79 m
Heliostat Height	5.89 m
Aspect Ratio	1.32
Heliostat Area	45.9 m2
Number of Heliostats	58057

HiTek Services, Inc.

Design-2		
Mirror Wide	4	
Mirrors High	3	
Heliostat Width	6.24	m
Heliostat Height	4.42	m
Aspect Ratio	1.41	
Heliostat Area	27.6	m2
Number of Heliostats	96761	

Design-4		
Mirror Wide	6	
Mirrors High	5	
Heliostat Width	9.35	m
Heliostat Height	7.37	m
Aspect Ratio	1.27	
Heliostat Area	68.9	m2
Number of Heliostats	38704	

Need to Control Tens of Thousands of Heliostats

Heliostat Requirements

- The Preliminary Load Design Specifications/Conditions are:
 - Area is $28m^2$
 - Face Up Wind Stow Position
 - Go To Wind Stow When a 30mph Gust is Observed
 - Heliostat Must Drive to the Wind Stow Position in a 50 mph Wind Gust at any Orientation
 - Survive 90mph Gusts at the Wind Stow Position

Key Results

- Using the Data Developed in SAND2007-3293, the Initial Analysis Shows an Optimal Heliostat Size Between 20 to 40 m².
 - Contrary to Traditional Trend Towards Larger & Larger Heliostats
 - In Step with Recent Efforts by eSolar and BrightSource

Summary

- 100MW_e Baseload Plant Sized
- Initial Cost Optimization Completed and Report Drafted
- Initial Heliostat Size Defined
- Heliostat Development Initiated
 - Azimuth Drive System Sized
 - Control Architecture Developed
 - Control Hardware Defined & Priced

Phase 1 - Future Work

- Continue Adding Detail and Refining Cost Algorithms and Resulting Optimal Heliostat Size
- Fabricate & Test a Representative Mirror Support Structure Segment
- Fabricate & Test a Representative Azimuth Drive
- Fabricate & Test Representative Control Electronics