Solar Energy Technologies Program Peer Review

Energy Efficiency & Renewable Energy

Enabling Energy Glass & Coatings for Solar Power

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

High Performance Reflector Panels for Concentrating Solar Power Assemblies

Dr. Paul A. Medwick

PPG Industries, Inc. Glass Business & Discovery Center medwick@ppg.com May 18, 2011

CSP Program Team

Outline

ENERGY Energy Efficiency & Renewable Energy

- Objective
- Overview
- Technical Approach
- Key Results/Accomplishments
 - Environmental durability test results (Test Matrix 5 and 6)
 - Benchmarking of alternative encapsulants
 - Improvement of PPG encapsulant
 - Novel alternative encapsulation process
 - Reflective coating performance
 - Impact on LCOE
- Key Challenges
- Next Steps
- Summary

Project Objective

Energy Efficiency & Renewable Energy

<u>Objective</u>: Develop and commercialize large-area secondsurface glass-based mirrors having superior value (performance & cost \rightarrow reduce LCOE)

This objective will be accomplished through research and development activities into alternate materials, structures, and fabrication processes for reflector components.

Not to scale encapsulant reflective coating SOLARPHIRE® PV low-iron glass

Overview

Timeline

- Preliminary PPG work: 2007 early 1Q2008
- Phase I: March September 2008 (complete)
- Phase II: October 2008 September 2010 (complete)
- Phase III (in-progress): October 2010 April 2012

Barriers/Challenges*

U.S. DEPARTMENT OF

- Task: Develop Advanced ٠ Reflector/Concentrator
- Barriers/challenges addressed
 - Optical performance of reflectors
 - Reliability (durability/product longevity) of _ reflectors \rightarrow 20+ years outdoors required
 - Fabrication/manufacturability (e.g. _ tempering, bending) of reflectors
 - **Economics**

External Interactions

- NREL ۲
- **Encapsulant application** ۲
- Bending feasibility ۲
- Corrosion mechanism studies

*Reference:

http://www1.eere.energy.gov/solar/pdfs/solar_program_mypp_2008-2012.pdf

Technical Approach

Three product types: Flat "annealed" (non-temperable) Flat temperable 3 Bent **Parallel** development of: **Bending Process** Heatable Reflective Coating **Encapsulant Material Encapsulation Process** Time

while assessing and improving <u>durability</u> and checking compatibility with other materials (e.g. adhesives)

- Phase I
 - Identified candidate encapsulant materials/processes
 - Executed initial durability testing
 - Demonstrated lab-scale coat-flat-then-bend feasibility for CSP geometries
 - Verified economics → ~ 5% reduction in levelized cost of electricity (LCOE)
- Phase II
 - Breakthrough encapsulant identified; defined encapsulation process parameters for Phase III scale-up
 - Demonstrated manufacturing-scale bendability; defined bending process parameters for Phase III scale-up
 - Executed validation tests on experimental prototype mirrors ("Test Matrix 5" → complete)
 - Completed Phase II work → DOE approved "Go" to Phase III

Key Accomplishments (by Project Phase; Slide 2 of 2)

- Phase III
 - Objectives
 - Decision: focus on <u>flat</u> non-tempered and tempered mirrors for DOE portion of project
 - ➤ Scale up
 - Complete final testing
 - Commercialize
 - Accomplishments to-date
 - Completed Test Matrix 5
 - Executed manufacturing-scale encapsulation trial (conventional) to benchmark commercially-available encapsulants vs. PPG (January 31-February 2, 2011)
 - Executing validation tests on experimental prototype mirrors ("Test Matrix 6" inprogress)
 - Improved PPG Pb-free encapsulant formulation
 - Developing alternative novel encapsulation process (in parallel with "conventional" curtain-coating process); built and demonstrated pilot-scale process
 - Demonstrated deposition of reflective coating on large-area glass substrates at targeted production throughputs (May 9-10, 2011)

Milestones & Status

Phase	Milestone	Status
1	Identification of protective coating candidates	Complete
1	Update on progress towards design verification and bending evaluation	Complete
1	Critical: Go / No Go recommendation	Go
2	Identification of process parameters for scaled-up manufacturing process (i.e. encapsulant application)	Complete
2	Identification of process needs for large scale, high-rate mirror fabrication (i.e. bending)	Complete
2	Prototype mirror samples for validation	Complete
2	Critical: Go / No Go recommendation	Go
3	Production mirror samples suitable for validation	In-progress
3	Finalize initial target customers and supply samples from robust manufacturing process	
3	Critical: Technical report and presentation on anticipated impact of this technology	

Accomplishment: Environmental Durability ("Test Matrix 5" Results)

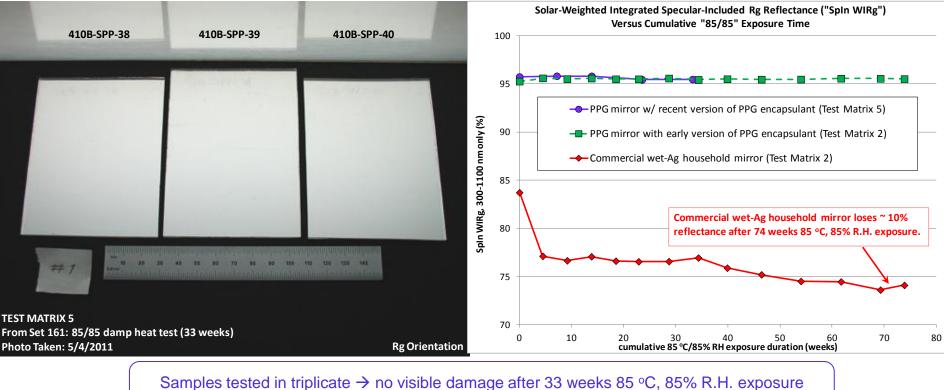
U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Cheswick (Pittsburgh), PA exposure site

• 15+ exposure protocols, including:

Fresno, CA exposure site


- CASS* Fog \rightarrow very corrosive \rightarrow primary screening test (fast)
- "85/85"** damp heat → "harshest test for wet-Ag solar mirrors" (NREL input) (but, long feedback loop → weeks/months)
- All Test Matrix 5 exposures completed (except outdoor exposures → ongoing)
- Good performance in most tests
 - Encapsulant adhesion issues in some tests → modified formulation (part of Test Matrix 6, in-progress)

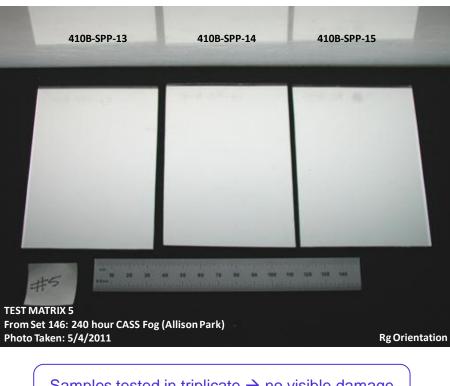
*CASS = Copper-Accelerated Acetic Acid-Salt Spray test (ASTM B368, DIN 50021) **85 °C/85% R.H.

Accomplishment: Test Matrix 5 Results (85 °C/85% R.H. "Damp Heat" Test)

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

(Test Matrix 5 \rightarrow exposure terminated)


KEY TAKE-AWAY

Encapsulated PPG mirrors sustain high reflectance and fare better than commercial wet-Ag household mirror in 85 °C, 85% R.H. damp heat exposure.

10 | Solar Energy Technologies Program

Accomplishment: Test Matrix 5 Results (240 Hour CASS Fog Exposure)

U.S. DEPARTMENT OF

t-Test: Paired Two Sample for Means> solar-weighted			
integrated reflectance, 300-1100 nm			
	initial/pre-	final/post-	
	exposure	exposure	
Mean	95.79	95.87	
Variance	6.0002	0.0003	
Standard Deviation	0.02	0.02	
Observations	3	3	
Pearson Correlation	0.2260		
Hypothesized Mean Difference	0		
df	2		
t Stat	7.304		
P(T<=t) one-tail	0.009116		
t Critical one-tail	2.9200		
P(T<=t) two-tail	0.01823		
t Critical two-tail	4.303		
No loss of reflectan	ice after		

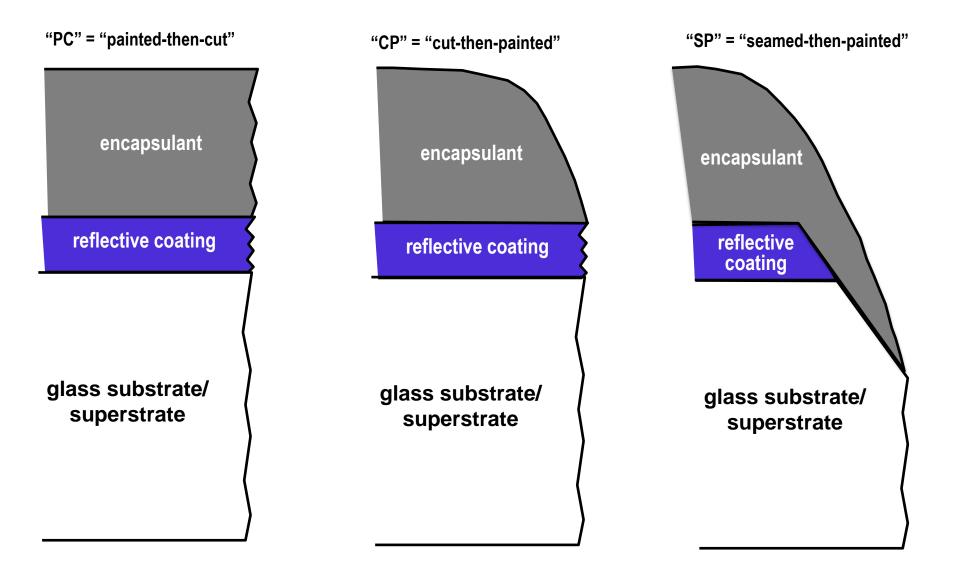
Samples tested in triplicate → no visible damage after 240 hours CASS Fog exposure.

240 hours CASS Fog exposure


KEY TAKE-AWAY

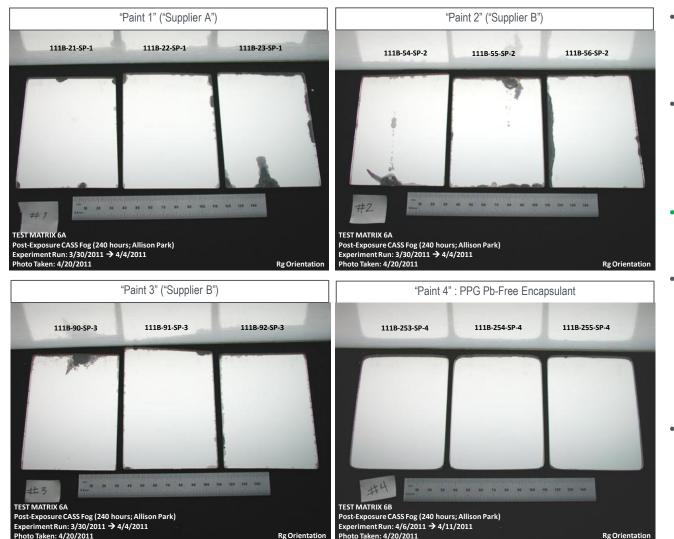
PPG Pb-free encapsulant well protects reflective coating in 240 hour CASS Fog test.

Accomplishment: Manufacturing-Scale Encapsulation Trial → Benchmark Alternative Encapsulants

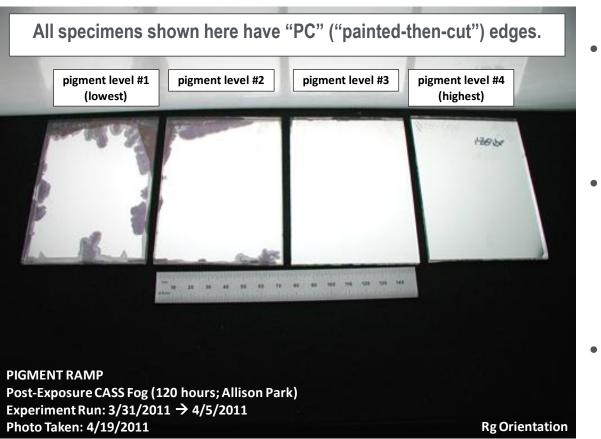

Energy Efficiency & Renewable Energy

- Manufacturing-scale trial (100 inch wide line, curtain coating process) January 31-February 2, 2011
- Applied three commercially-available CSP-grade solar mirror encapsulants (up to 72 inch x 84 inch): two Pb-free ("Paint 1", "Paint 3"), one Pb-containing ("Paint 2")
- Different "edgework" types
- Specimens included in Test Matrix 6 (in-progress).

Test Matrix 6: Mirror "Edgework Types" (not to scale)



Accomplishment: Benchmark Alternative Encapsulants (Test Matrix 6 \rightarrow ~1,200 specimens)



Energy Efficiency & Renewable Energy

- Commercially-available CSPgrade encapsulants are not performing as well as expected in CASS test
- No clear difference between commercially-available Pb-free paints (Paints 1, 3) and Pbcontaining paint (Paint 2) in CASS test
- Best-performer in CASS Fog test is PPG Pb-free encapsulant (Paint 4).
 - Note: (1) Paints 1-3 curtain-coated on manufacturing-scale line → some encapsulant defects on small samples → negative impact on durability?;
 (2) Paint 4 (PPG) coated using lab-scale curtain coater
 - Recent/current work: optimize pigment concentration to further improve protective robustness of PPG encapsulant (see next slide)

*CASS = Copper-Accelerated Acetic Acid-Salt Spray test (ASTM B368, DIN 50021)

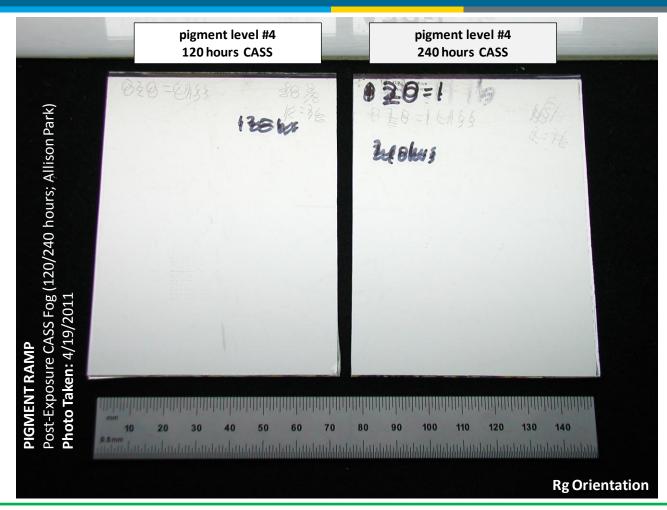
Optimize corrosion inhibitive pigment
 concentration → good
 CASS durability

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

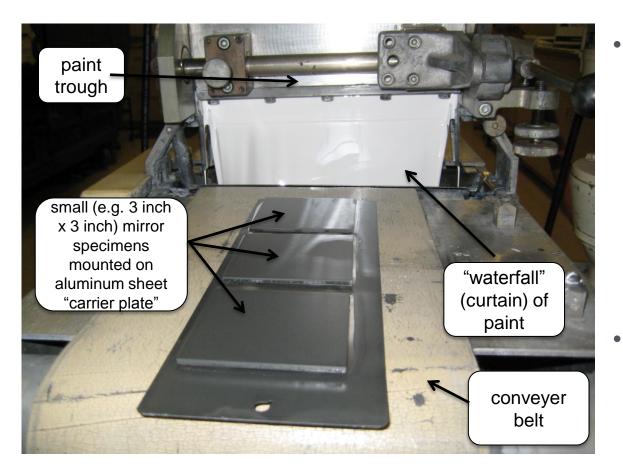
ENERGY


- Curtain-coatability of optimized formulation demonstrated → planning for production scale-up
- Manufacturing-scale encapsulation trial: target September 2011.

*CASS = Copper-Accelerated Acetic Acid-Salt Spray test (ASTM B368, DIN 50021)

Accomplishment: Improved PPG Encapsulant Formulation

Energy Efficiency & Renewable Energy


KEY TAKE-AWAY

PPG's improved Pb-free encapsulant, with increased corrosion-inhibitive pigment, well protects reflective coating for at least 240 hours CASS Fog exposure even for specimens with "PC" ("painted-then-cut") edges.

*CASS = Copper-Accelerated Acetic Acid Salt Spray test (ASTM B368, DIN 50021)

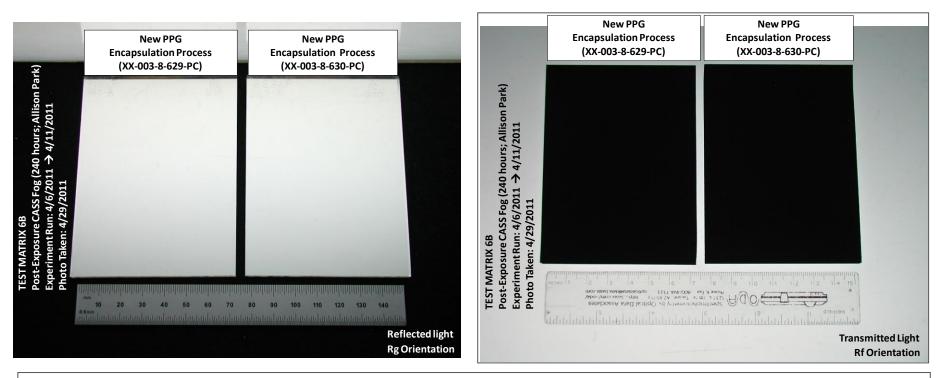
16 | Solar Energy Technologies Program

Accomplishment: Improved PPG Encapsulant Formulation

Curtain-coatability of
improved PPG
encapsulant
formulation
demonstrated on labscale (6 inch wide)
coater → currently
optimizing formulation
for production scale-up

Energy Efficiency &

Renewable Energy

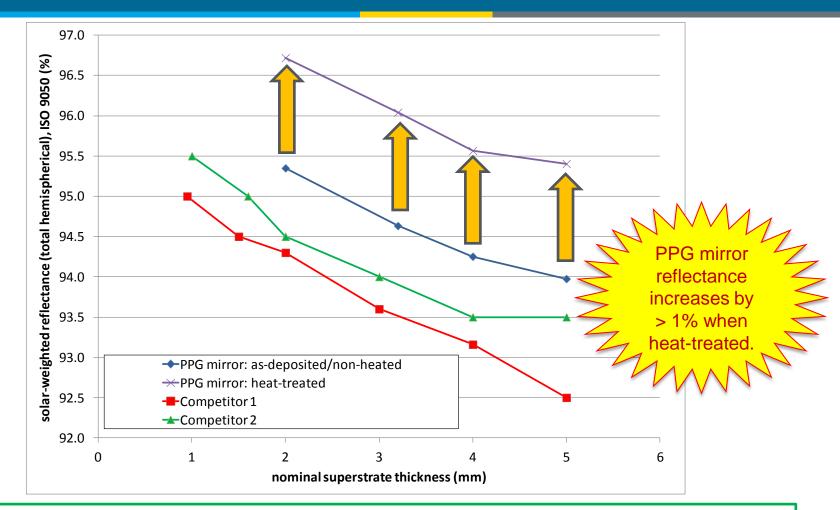

U.S. DEPARTMENT OF

ENERGY

Manufacturing-scale encapsulation trial: target September 2011.

Accomplishment: Alternative Encapsulation Process

- Novel encapsulation process in-development → alternative to conventional application techniques (e.g. curtain coating, roll coating)
- Reduces VOCs vs. conventional solvent-borne process
- High transfer efficiency
- Pilot-scale coater built \rightarrow coat up to 24 inch x 36 inch panels
- Good CASS Fog durability at lower pigment levels even for "PC" ("painted-then-cut") edges


*CASS = Copper-Accelerated Acetic Acid-Salt Spray test (ASTM B368, DIN 50021)

18 | Solar Energy Technologies Program

Accomplishment: Reflective Coating Optical Performance

U.S. DEPARTMENT OF ENERGY R

Energy Efficiency & Renewable Energy

KEY TAKE-AWAYS

- 1. Heat-treatment increases PPG mirror's reflectance by more than 1%.
- 2. PPG mirror has higher reflectance than Competitors 1 & 2 reported values at equivalent superstrate thicknesses.

Accomplishment: Specularity of Reflective Coating

PPG (non-heated), NREL data: 3.2 mm glass superstrate Competitor 2, 6/29/2010 press release: 1.6 mm glass superstrate 98.0 97.5 97.0 (%) 96.5 96.0 95.5 Т Reflectance Specularity requirements \rightarrow 95.0 dependent on CSP 94.5 technology 94.0 93.5 Parabolic Trough: 15 mrad 93.0 Dish: 2 mrad 25 mrad (D&S) 7 mrad (D&S) 15 mrad (D&S) Tower: 1-2 mrad CLFR: 25 mrad

KEY TAKE-AWAY

PPG's <u>3.2 mm</u> thick mirror's specularity at 660 nm is comparable to, or better than, Competitor 2's <u>1.6 mm thick</u> mirror.

Accomplishment: Impact on LCOE

U.S. DEPARTMENT OF	Energy Efficiency &
ENERGY	Renewable Energy

			% change in		
			total direct		
	mirror		costs vs.		
	reflectance,		baseline		% change in LCOE
	solar-	total direct	(SEGS VI)	real LCOE	vs. baseline (SEGS
mirror type	weighted (%)	costs (\$MM)	case	(\$/Mwh)	VI) case
SEGS VI	92.8	569.5	0.0%	86.3	0.0%
S&L 2008	92.8	543.8	-4.5%	82.9	-3.9%
PPG	94.1	532.4	-6.5%	81.2	-5.9%

System:	2.5.0.2 200MW Baseline 500C w/6hr TES CA Daggett.tm2	Parabolic t baseline case for LCOE ana
Federal ITC Percent:	10	SAM versior
Utility Rates:	SCE	
Financials:	Utility - IPP	
Solar Multiple:	2	
\sim	LS-3 w/modified %R, HiTec 500C, Molten Salt Storage,	
Field Spec.	Schott PTR70	
	Competitor #1: Ag/Cu with low-Pb encapsulant (per C.	
Baseline %R:	Kennedy, NREL)	

trough e assumed alyses per n 2.5.0.2

KEY TAKE-AWAYS

1. PPG mirrors reduce total direct costs by ~ 5.5-6.5% vs. baseline case.

2. PPG mirrors reduce LCOE by ~ 5-6% vs. baseline case.

ENERGY Energy Efficiency & Renewable Energy

- No CSP industry mirror durability standards
- No access to competitive CSP mirrors (or data) for benchmarking (reflectance and durability)
- Long feedback loops on some durability tests
- PPG encapsulant
 - "In-can" shelf-stability
 - Protective efficacy (use CASS Fog test to screen/optimize)
 - "Drop-in" compatibility with existing manufacturing encapsulant application/curing infrastructure
 - Cost

Next Steps

- Demonstrate deposition of reflective coating at expected commercial line speed on production coater; produce large-area mirrors for manufacturing-scale application trial of PPG encapsulant
 - Completed May 9-10, 2011
 - Demonstrated up to 72 inch x 84 inch
 - Expect scalable to larger sizes
- Complete lab-scale development of PPG encapsulant (2Q2011); optimize/refine/confirm:
 - "In-can" shelf-stability
 - Protective efficacy (use CASS Fog test to screen/optimize)
 - Compatibility with existing encapsulant application/curing process
 - Cost
 - Produce appropriate volume for manufacturing-scale trials
- Execute manufacturing-scale application trial of PPG encapsulant; produce specimens for final round durability tests: Sept. 2011
- Execute final round durability tests ("Test Matrix 7"): 4Q2011-1Q2012
- Write final DOE project report: 2Q2012

Summary

Using DOE funding and non-DOE funding, PPG is continuing development of a new second-surface glass mirror for CSP applications:

- High reflectance \rightarrow advantage: PPG
- Coated glass can be tempered or bent (before encapsulation)
- Bending feasibility demonstrated (but current focus on flat mirrors)
- Reflectance increases after heat-treatment
- PPG Pb-free encapsulant developed and improved \rightarrow full-scale trial target 3Q2011
- Novel alternative encapsulation process demonstrated at pilot scale (up to 24 inch x 36 inch)
- Promising environmental durability test results (Test Matrix 5); Test Matrix 6 inprogress
- Executed manufacturing-scale encapsulation trial to benchmark alternative commercially-available encapsulants (January 31-February 2, 2011)
- Demonstrated manufacturing-scale reflective coating deposition at full production speeds (May 9-10, 2011)
- Environmental advantages of PPG approach: (1) no wet-Ag process wastes, (2)
 Pb-free encapsulant