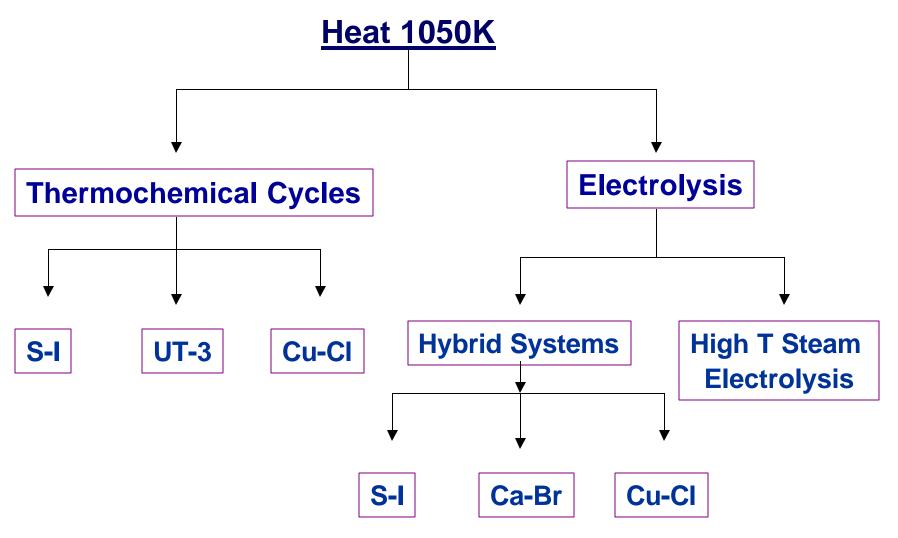
High-Temperature Electrolysis

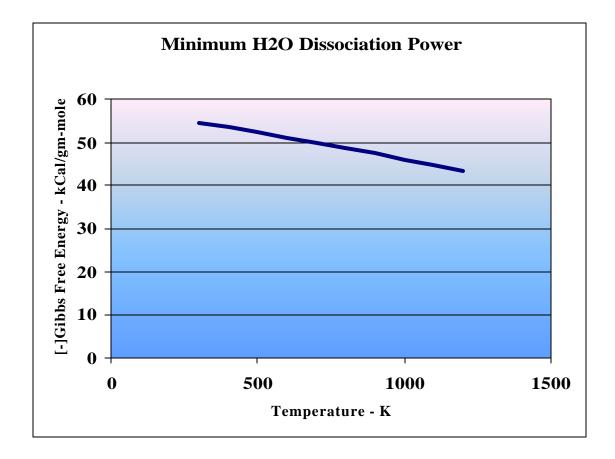
Richard Doctor, Diana Matonis, Robert Lyczkowski DOE Solar-Hydrogen Workshop UMUC Conference Center – Adelphi, MD 9-10 November 2004


Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Evaluation of Cycles for Hydrogen Production

High-Temperature Electrolysis for Hydrogen Production - Materials


• Drivers for High-temperature electrolysis:

- Oxygen is the charge carrier, rather than hydrogen this requires high temperatures, but no use of strategic metals
- Low-footprint for this system, it is adaptable to many scales
- Highest efficiency for electrolysis

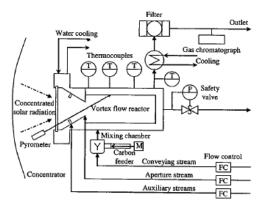
Higher temperatures for steam electrolysis are one contributor to reduced power demands

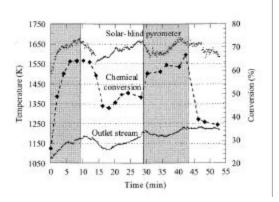
High-Temperature Electrolysis for Hydrogen Production - Materials

- (1) coordinate with the experimental work at INEEL that will demonstrate the improvements in performance for a hightemperature steam electrolysis system operating at up to 1,000 K and assure that the data required to conduct a detailed process design study are linked into an ASPEN-based process design
- (2) consider the issues affecting the long-term performance of electrolyzer cells in this service
- (3) consider the requirements for producing and handling reagent-grade water that will be employed for these cells, starting from a base of available non-potable water at the production facility site

High-Temperature Electrolysis for Hydrogen Production - Materials

- (4) examine the technological features as they link to process economics, surveying what would be needed to achieve commercial viability using these technologies, particularly the appropriate scale of operations
- (5) perform life-cycle emissions evaluations to quantify the reductions that can be achieved by using these technologies.


OBJECTIVES – High Temperature Electrolysis

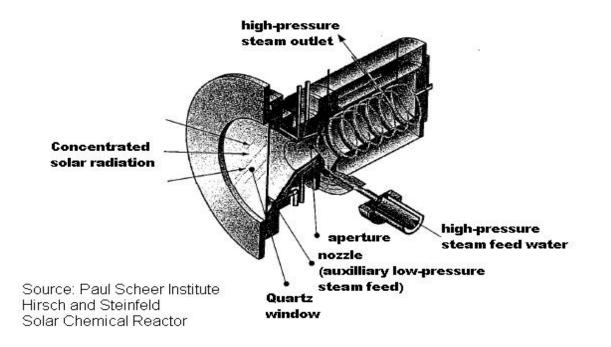

- Optimize Hydrogen Production
 - Choice of process
 - Optimize materials and operating conditions
- Optimize Overall Plant System
 - Integrate selected process into balance of plant
 - Heat Recuperation from product streams
 - Perform a energy/pinch analysis
 - Perform an overall efficiency analysis of plant.
- Cooperative program with INEEL

Linkage of steam-electrolysis to a solar energy system will improve scalability and economics

Hirsch and Steinfeld, Paul Scheer Institute in

Hydrogen Energy 29, 2004 47-59

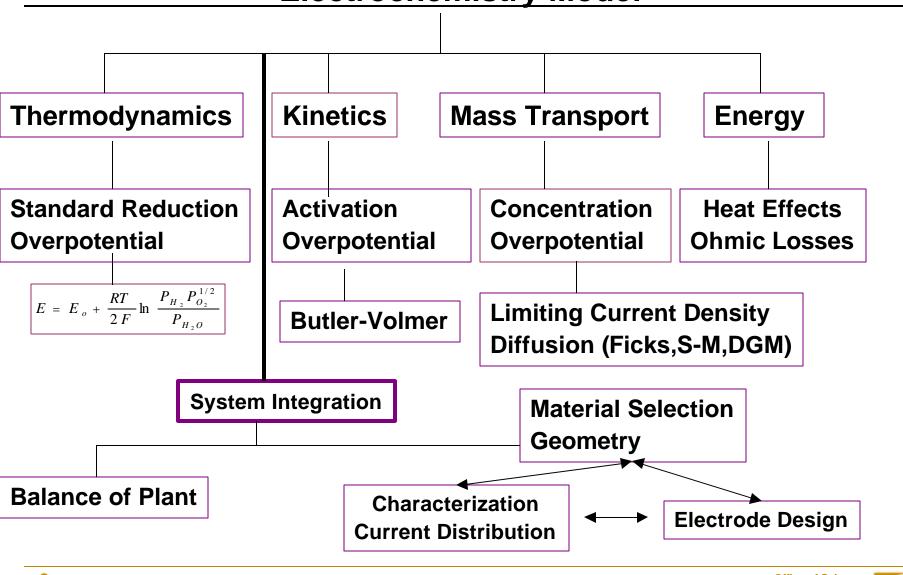
Demonstrates very encouraging progress that could be directly applied to steam electrolysis



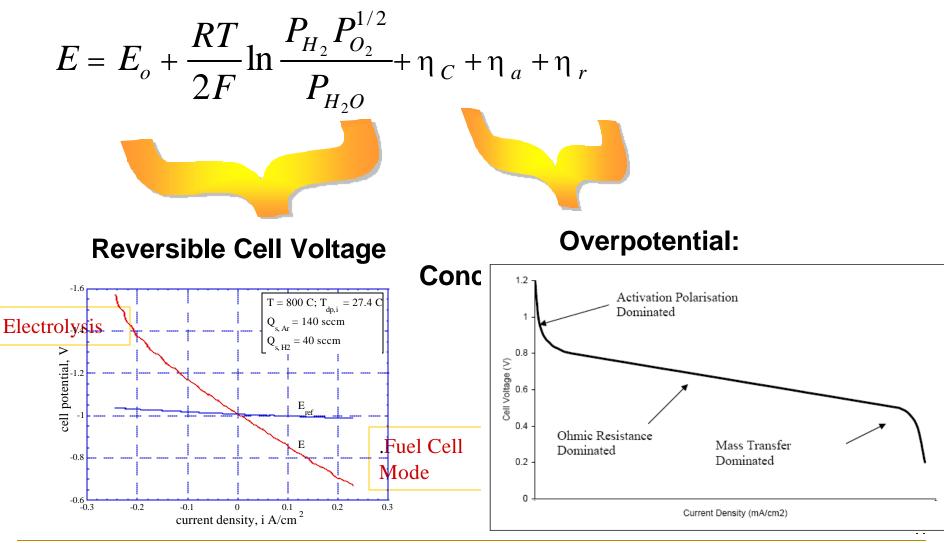
Multiple paths for linking steam electrolysis to renewable energy are being pursued

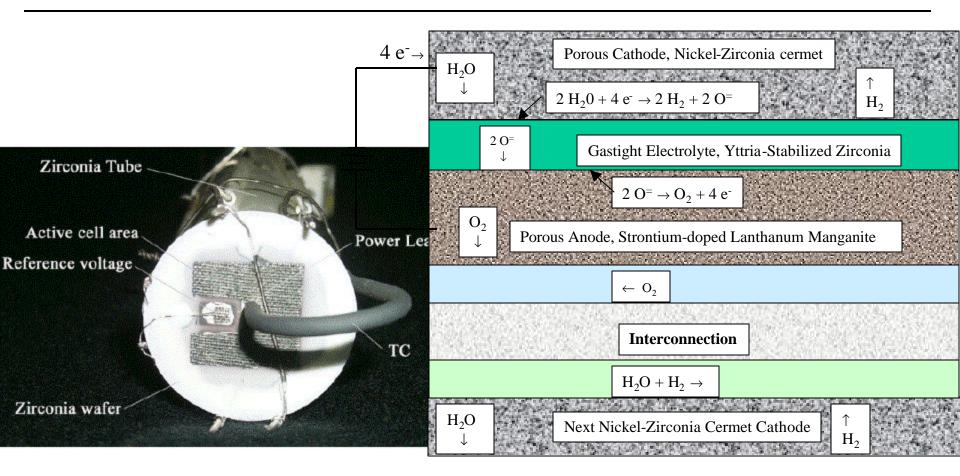
Hirsch and Steinfeld, Paul Scheer Institute

Hydrogen Energy 29, 2004 47-59



Computational Fluid Dynamics


Electrochemistry Model


SOFC/SOEC Modeling Overpotential

Button and Stack SOFC/SOEC Experiment

Taken From INEEL report 2004, Steve Herring and Jim O'Brien, "High Temperature Solid Oxide Electrolyser System"

Available Commercial CFD Codes

- Code Selection
 - ✓ Femlab
 - ✓ Star-CD

Calculations based on current Current density establishes rate of oxygen transport through electrolyte

- ✓ Fluent
- STARCD
 - 350 Node Linux Parallel Cluster at ANL

V-I Characteristics

$$E = E_{rev} + \frac{(r_1 + r_2T)}{A}I + (s_1 + s_2T + s_3T^2)\log_{10}\left[\frac{\left(\frac{t_1 + \frac{t_2}{T} + \frac{t_3}{T^2}}{A}\right)I + 1}{A}\right]$$

E operating cell voltage E_{rev} reversible cell voltage R ohmic resistance of electrolyte s,t coeff for overvoltage on electrodes

Stand-Alone Power Systems For the Future: Optimal Design, Operating &Controle of Solar-Hydrogen Energy Systems, PhD thesis O. Ulleberg. 1998 Norwegian University of Science and

Ohmic Losses

- •Area Specific Resistance (ASR)
 - ASR = thickness/conductivity(ó)
- •Voltage Loss due to Ohmic resistance

•V=i*ASR

•Electrolyte offers considerable resistance

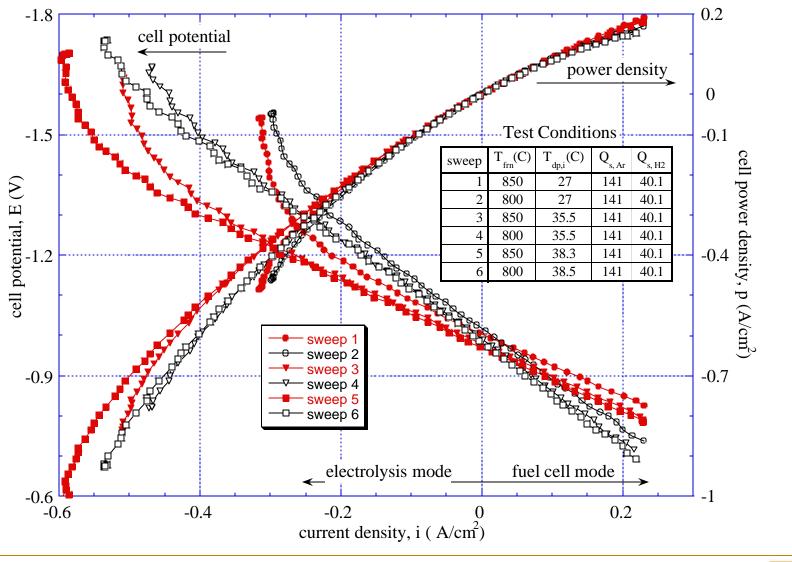
•ó(YSZ)=0.3685 +0.002838exp(10300/T)

- •Electrodes offer relatively small resistance and are given in literature.
 - Many treat as constants
 - •Anode: 0.0014 Ù-cm
 - •Cathode: 0.0186 Ù-cm
- Interfacial Resistances: ~0.1 Ù-cm

Butler –Volmer Aproximation â=0.5 most assume for fuel cells

- Electrode charge-transfer overpotential
- Combined for both electrodes
- Three adjustable parameters for calibration

$$V_{B-V} = \left(\frac{R \cdot T}{\alpha \cdot F}\right) \cdot \sinh^{-1} \left(\frac{i}{2 \cdot i_0}\right)$$
$$i_0 = P_{exp} \cdot \exp\left(\frac{-E_{act}}{R \cdot T}\right)$$


 $\alpha \equiv$ adjustable parameter $i \equiv$ average cell current density $i_0 \equiv$ exchange current density $P_{exp} \equiv$ pre – exponential (adjustable)

 $E_{act} \equiv activation energy (adjustable)$

INEEL SUPPLIED V-I Curves

Cathode Concentration Overpotential

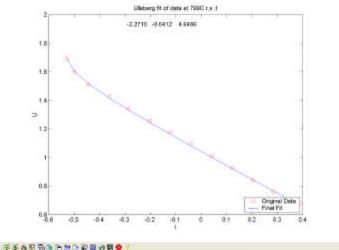
Using Fick Law of Diffusion

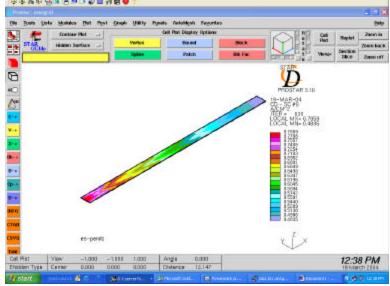
$$J_{A}\left(\frac{gm-mol}{cm^{2}s}\right) = -cD_{AB}\nabla x_{A} \qquad V = \frac{RT}{2F}\left[\ln\left(1-\frac{i}{i_{H_{2}O}}\right) - \ln\left(1-\frac{i}{i_{H_{2}}}\right)\right]$$

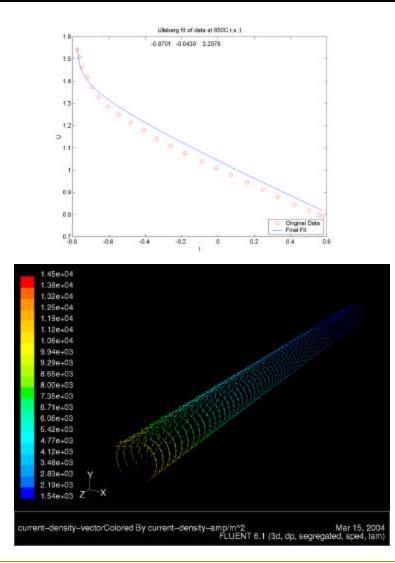
$$i_{H_{2}} = \frac{2FP_{H_{2}}D_{H_{2}}^{eff}}{RTL_{a}} \qquad i_{H_{2}O} = \frac{2FP_{H_{2}O}D_{H_{2}O}^{eff}}{RTL_{a}} \qquad \begin{array}{l} \hat{O}=\text{porosity} \\ \tau = \text{tortuosity} \\ r = \text{molecular radius} \end{array}$$

$$D_{H_{2}O}^{eff} = \frac{\phi D_{H_{2}O}^{unary}}{\tau} \qquad D_{ij}^{binary} = \frac{0.001T^{1.75}\sqrt{\frac{1}{M_{i}} + \frac{1}{Mj}}}{D(n+1)^{2}}$$

Pulsed Gradient Spin Echo NMR measurements of the time-dependent


diffusion coefficient, D(t).

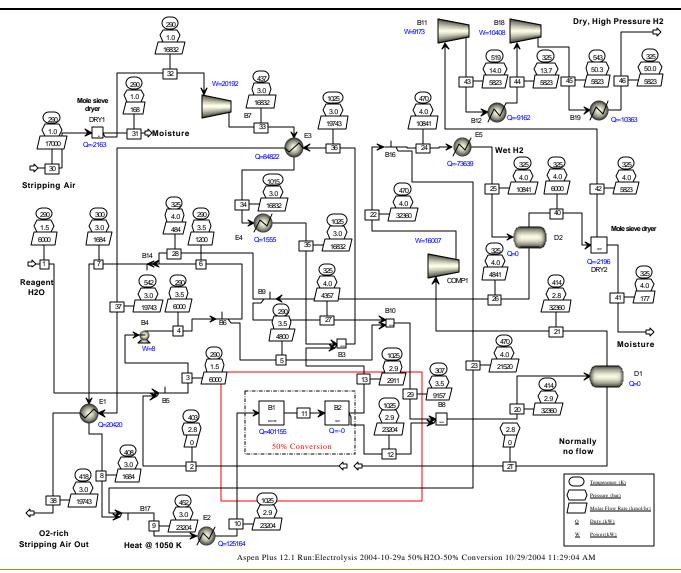



 $\Gamma(i_i + i_j)$

CFD Simulations will be a very necessary elements of SOEC development

Extra components needed to

- -Gases need to be circulated through the stack
- -Compressors, pumps or blowers
- -Electric motors to drive pumps, blowers and compressor
- -Fuel cell needs to connected to load like DC/DC converter for simple voltage regulator as used by INEEL expt.
- -Cooling system, air-preheater



Low-temperature Electrolysis – 1 kg/h H₂

		H2 (kW-HHV/kg) = 3			39.447
	cost	cost basis		power (kW)	
Housing/Forecourt dispenser (NEPA Compliant)	\$12,000				
Electric Power Transformer	\$14,000	0.20	\$/W	-5%	3.50
Water System-manifolding	\$1,250				0.10
Electric Power Invertor/Conditioning	\$45,932	0.85	\$/W	-5%	2.70
Electrolytic Cells (\$/kW)	\$143,199	\$2,650	\$/kW	73%	54.04
Hydrogen Compression (ambient - 100 psi)	\$20,000				1.05
Hydrogen Compression (100 - 5,000 psi)	\$78,678			15%	3.60
Hydrogen dispensing (5,000 psi)	\$17,984				0.50
800kW-Natural Gas Compression/Hythane (50 - 3,600 psi)	\$29,974				2.09
800kW-Hythane dispensing (3,600 psi)	\$11,990				0.50
Oxygen system manifolding	\$2,500				0.15
Controls/Auxiallry	\$25,585	7.0%			0.80
Cooling fan	\$1,250			1.4%	0.98
Profit	\$60,657	15.0%			
TOTAL	\$465,000	Power (kW _{electric})		70.00	

High-T Electrolysis Balance of Plant

High-temperature Electrolysis – 1 kg/h H₂

		H2 (kW-HHV/kg) = 3			33.721
	Cost	Cost basis		Power (kW)	
Housing/Forecourt dispenser (NEPA Compliant)	\$18,000				
Electric Power Transformer	\$10,000	0.20	\$/W	-5%	2.50
Water System-manifolding	\$500				0.10
Steam system	\$8,000				0.00
Electric Power Invertor/Conditioning	\$30,820	0.85	\$/W	-5%	1.81
Electrolytic Cells (\$/kW)	\$123,282	\$3,400	\$/kW	93%	36.26
Hydrogen Compression (ambient - 100 psi)	\$27,000				1.05
Hydrogen Compression (100 - 5,000 psi)	\$78,678			15%	3.60
Hydrogen dispensing (5,000 psi)	\$17,984				0.50
800kW-Natural Gas Compression/Hythane (50 - 3,600 psi)	\$29,974				2.09
800kW-Hythane dispensing (3,600 psi)	\$11,990				0.50
Oxygen system manifolding	\$20,000				0.70
Controls/Auxiallry	\$25,076	7.0%			1.20
Moisture dryers	\$2,150				0.00
Cooling fan	\$875			1.4%	0.71
Profit	\$60,671	15.0%			
TOTAL	\$465,000	Power (kW _{electric})			51.02
		Power (kW _{Q@1050K})			10.66

Capital Cost Comparison

	High-T	Low-T
Housing/Forecourt dispenser (NEPA Compliant)	\$18,000	\$12,000
Electric Power Transformer	\$10,000	\$14,000
Water System-manifolding	\$500	\$1,250
Steam system	\$8,000	
Electric Power Invertor/Conditioning	\$30,820	\$45,932
Electrolytic Cells (\$/kW)	\$123,282	\$143,199
Hydrogen Compression (ambient - 100 psi)	\$27,000	\$20,000
Hydrogen Compression (100 - 5,000 psi)	\$78,678	\$78,678
Hydrogen dispensing (5,000 psi)	\$17,984	\$17,984
800kW-Natural Gas Compression/Hythane (50 - 3,600 psi)	\$29,974	\$29,974
800kW-Hythane dispensing (3,600 psi)	\$11,990	\$11,990
Oxygen system manifolding	\$20,000	\$2,500
Controls/Auxiallry	\$25,076	\$25,585
Moisture dryers	\$2,150	
Cooling fan	\$875	\$1,250
Profit	\$60,671	\$60,657
TOTAL	\$465,000	\$465,000

Power use comparison

	High-T	Low-T	
Housing/Forecourt dispenser (NEPA Compliant)			
Electric Power Transformer	2.50	3.50	
Water System-manifolding	0.10	0.10	
Steam system	0.00	0.00	
Electric Power Invertor/Conditioning	1.81	2.70	
Electrolytic Cells (\$/kW)	36.26	54.04	
Hydrogen Compression (ambient - 100 psi)	1.05	1.05	
Hydrogen Compression (100 - 5,000 psi)	3.60	3.60	
Hydrogen dispensing (5,000 psi)	0.50	0.50	
800kW-Natural Gas Compression/Hythane (50 - 3,600 psi)	2.09	2.09	
800kW-Hythane dispensing (3,600 psi)	0.50	0.50	
Oxygen system manifolding	0.70	0.15	
Controls/Auxiallry	1.20	0.80	
Moisture dryers	0.00	0.00	
Cooling fan	0.71	0.98	
Profit			
Power (kW _{electric})	51.02	70.00	
Power (kW _{Q@1050K})	10.66	0.00	

Cross-Cutting Research Directions

Membranes and Separation

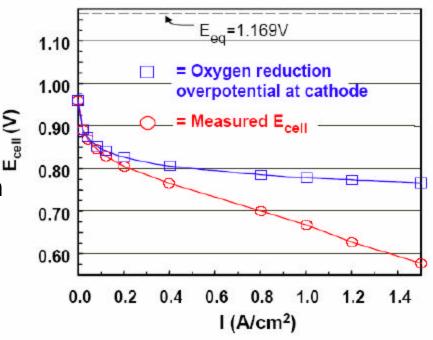
Ceramic membranes used for the separation of oxygen from air must simultaneously achieve high-flux oxygen transport and equally large electronic transport, and, at the same time, must survive the extreme conditions of the membrane reactor

- high temperatures
- reactive environments
- highly reducing conditions on one surface of the membrane

Characterization and measurement techniques

- Advanced Photon Source
- Electron Microscopy

Theory, modeling and simulation


- Diffusion Models
- Continued Interdisciplinary Effort

Issues with High-Temperature Electrolysis

- Desirable for product hydrogen to be produced at high pressures
 - Robust cell design necessary
- Electrical energy intensive
 - High ohmic losses due to thick electrolyte
 - High strength design needed
 - High overpotential on oxygen electrode
 - High overpotential and degradation of steam/hydrogen electrode
 - High thermodynamic potential to overcome

Office of Science

U.S. Department

of Energ

Conclusions – High Temperature Electrolysis

- Capital Costs appear competitive
- Physical plant footprint will be lager
- Premium (*Electric*) Power demands are much lower
- Premium heat demands now needed

