

Andrew Yip

Pacific Gas and Electric Company (PG&E)

PG&E HIGH PENETRATION SOLAR PV CURRENT STATUS AND RESEARCH

PG&E Overview

Company Facts

- Fortune 200 company located in San Francisco, CA
- \$14B in operating revenues in 2010
- 20,000 employees

Energy Supply

- Services to 15M people:
 - 5.2M Electric accounts
 - 4.3M Natural Gas accounts
- Peak electricity demand: 20,000 MW
- Over 50% of PG&E's electric supply comes from non-greenhouse gas emitting facilities

Service Territory

- 70,000 sq. miles with diverse topography
- 160,000 circuit miles of electric transmission and distribution lines
- 49,000 miles of natural gas transmission and distribution pipelines

PG&E Renewable Energy Programs

U.S. Department of Ene

Solar PV Programs

Note: Customer-Side Solar PV Online value includes projects associated with various customer-side incentive programs. In-development and PG&E Program Cap value only includes projects in the California Solar Initiative mass market program.

PG&E and Distributed PV

- PG&E is a leader in distributed PV
 - > 79,000 installations
 - > 802 MW (CEC AC)
 - ~ **30%** of US total
 - PG&E serves ~5% of US population
 - Over 17,000 interconnections in 2012

SunShot

PV Penetration Status

- Overall high penetration of PV in PG&E territory (relative to other utilities)
- However, feeder-level penetration is generally low (relative to feeder max demand)
- On the other hand, high concentrations of PV exist in some localized areas (i.e., on individual transformers)

PV Penetration by Circuit

* % PV Penetration = PV MW (CEC AC) / 2009 Feeder Max Demand

Currently, DG penetration is low at about 5% of System Peak

Penetration = installed DG as a % of total system peak (22,000MW)

	CC	DA	DI	EB	FR	KE	LP	MI	NB	NC	NV	PE	SA	SF	SJ	SI	ST	YO	TOTAL
Existing	36	38	52	33	229	37	29	59	50	74	46	31	59	19	72	63	28	40	995
Proposed	27	7	18	6	371	330	33	18	5	25	52	4	68	4	32	23	55	186	1264

At Low Penetration, DG System Impacts are Manageable

- All DG's are studied individually for potential impact and mitigated prior to physical interconnection
 - Studies focus on Safety, Equipment Loading, Voltage Fluctuation and Islanding
- For most feeders, aggregate DG is less than local load, and power flows on the feeders are still from the substation out in a radial mode
- All identified issues are mitigated to have less than significant system impacts

Voltage Concerns

Floctric	Nominal Two-Wire And Multi-Wire	Minimum Voltage To	Maximun Volta Resider Comn Distributio	n Service ge On htial And hercial on Circuits	Maximum Service Voltage On Agricultural And Industrial		
Electric	Service Voltage	All Services	Class A	Class B	Distribution Circuits		
Rule 2	120 208 240 277	114 197 228 263	120 208 240 277	126 218 252 291	126 218 252 291		

 DG (PV) can impact the voltage profile along a given feeder, driving the service voltage outside of acceptable ranges at points – particularly in low-load conditions

PV and the Distribution Grid: Challenges

PV can cause...

- Service voltage to exceed the acceptable range
 - Can lead to inverter trip-offs (potential domino effect)
- Flicker
 - Due to inverter trip-offs or rapid cloud cover

In what cases?

- *High concentrations* of PV beyond a single transformer
- Large PV on feeders
- PV at points on feeder *already close to voltage limits*

Voltage Mitigations

Today, voltage impacts of PV on the grid are generally addressed by **adjusting settings** or **relocating** distribution system equipment, including:

In certain situations with fast voltage fluctuations due to intermittency, **<u>reconductoring</u>** may be the only effective mitigation measure. **Energy storage** is an alternative but has higher capital cost and market operational uncertainties

PV and the Distribution Grid: Today

 Examples of grid problems caused by PV and mitigation strategies employed

Concern	Mitigation Strategy
A facility's 10-kW PV system (inverter) trips off-line when customer load is light due to high service voltage	Adjust voltage regulator settings
Generators at a facility downstream of a 1-MW PV system trip off-line due to high service voltage	Adjust capacitor bank settings

- Generally, few impacts today despite the relatively high number of PV systems
- However, requirements for mitigation may increase in future with increased penetration of PV in localized areas

PV and the Distribution Grid: Potential Future Strategies

• In the future, the negative impacts of PV on the grid may be mitigated in a variety of ways

Current Research for Distributed Solar PV

Collaborative efforts

- Development and Analysis of a Progressively Smarter Distribution System (UC Irvine)
- Advanced Grid-Interactive Distributed PV and Storage (Solar City/Tesla Motors/ UC Berkeley)
- PV and Advanced Energy Storage for Demand Reduction (SunPower/KEMA)
- Quantification of Risk of Unintended Islanding and Re-Assessment of Interconnection Requirements in High-Penetration of Customer-Sited Distributed PV (GE)
- Screening Distribution Feeders: Alternatives to the 15% Rule (NREL/Sandia/CPR)
- Tools Development for Grid Integration of High PV Penetration (BEW)

• Other research areas

- Two internal studies to assess the impacts of PV on the PG&E distribution system with separate focus on (a) 1-20 MW systems and (b) smaller (e.g., residential) systems.
- A DOE SEGIS-funded, EPRI-led project involving National Grid, Excel Energy, and Detroit Edison that will explore how utility-inverter communication can enable "smart" inverters to optimally provide grid support. PG&E is supporting this project in an advisory role.

Andrew Yip

AXY4@pge.com

415-973-6143

Q &A AND DISCUSSION

