Virginia Tech: Jason Lai, Jason Dominic, Bin Gu, Nathan Kees, Ben York, Wensong Yu

Electric Power Research Institute: **Jeff Smith**, Tom Key, Chris Trueblood

Baylor University: Mack Grady

Jason Lai, James S. Tucker Professor Virginia Tech

Jeff Smith, Senior Manager EPRI

> HIGH-PENETRATION PV MODELING, MONITORING, AND ANALYSIS WITH ADVANCED POWER ELECTRONICS

Focus Areas

Modeling and Simulation

- Solar PV modeling
- Grid Integration analysis
- Smart inverters
- Solar PV monitoring
- PV ramp rate
- PV variability assessments
- Open-source utility modeling tool

Power Electronics

- PV inverter testing
- Cost effectiveness study of PV power conditioning systems
- Development of advanced power conditioners
- Field demonstration with advanced power conditioners

Key Deliverables

Modeling and Simulation

- Evaluation of smart inverters for increasing feeder hosting capacity
- Website hosting measurement data and feeder models (opensource)
- Statistical analysis of PV variability at distribution level
- Hosting capacity results considering % boundary limits
- Comparison of single-point vs multi-point cloud models for distribution analysis

on Power Electronics

- Micro-converter (DC optimizer) design with isolation
- Micro-inverter design without electrolytic capacitors
- String/centralized inverter design without cooling fans
- Hardware-in-the-loop simulation

Feeder Comparison

Measured Voltage as Function of PV Output

900

700

1000

Measurement Data

Solar Monitoring

DPV Pole-Mount Panels Metered Large-Scale PV

Time Series Response with Existing PV

6

Hosting Capacity Comparison

Quick Look at Overvoltage Impacts

Feeder B

Feeder A

No observable violations regardless of size/location

Possible violations based upon size/location

Observable violations occur regardless of size/location

Hosting Capacity Comparison

Feeder Comparison				
		Feeder A	Feeder B	
Feeder	Voltage (kV)	13.2	12.47	
Characteristics	Peak Load	5 MW	6 MW	
	Minimum Load	0.8 MW	0.7 MW	
	Min Daytime Load	1.1 MW	0.7 MW	
	Existing PV (MW)	1.0	1.7	
	Total Circuit Miles	28	58	
	Minimum Hosting Capa	icity (kW)		
Voltago	Primary Overvoltage	>3500	420	
voltage	Regulator Deviation	>3500	250	
	Total Fault Contribution	>3500	1685	
	Sympathetic Tripping	1478	1426	
Protection	Reduction of Reach	>3500	1489	
	Fuse Saving	1771	1426	
	Anti-Islanding – Breaker	400	390	

Customer-based PV results shown

What About PV With Smart Inverters?

Use of Smart Inverters for Increasing Hosting Capacity

Volt-Watt Control** **○** P2 Max Watt Output [% of Wmax] P1 / V1 V2 V3 V4 Allowed Operating Area P3 P4 100% Voltage (% of Vref) Voltage (% of Vref)

Volt-Var w/ Hysteresis**

*Currently in OpenDSS **available in OpenDSS Q1 2013

Dynamic Var Control**

Increasing Hosting Capacity with Smart Inverters

Sample Results from Feeder with Limited Hosting Capacity

Without Volt/var Control

Volt/var Control

Increasing penetration (kW)

		PV Hosting Capacity (kW)		
		Without Volt/var	With Volt/var	
Primary Voltage Deviation	1st violation	938	>2500	🛑 160% increase ir
	50% scenarios with violation	1323	>2500	hosting capacity
	All scenarios with violation	1673	>2500	000/
Primary Over Voltage	1st violation	540	880	60% increase in
	50% scenarios with violation	871	1464	nosting capacity
	All scenarios with violation	1173	2418	

Maximum Voltages, Minimum load

SunShot U.S. Department of Energy

Improvement in Hosting Capacity

Offpeak Load

		PV Hosting Capacity (kW)	Hosting Capacity increase with volt/var (%)	
		Without Volt/var	4pt volt/var 6pt volt/var	
Voltage Deviation	Primary	1132 kW	inf	inf
	Regulator	397	Inf	507 %
	Secondary	2275	inf	inf
Over Voltage	Primary	421	689	395
	Secondary	229	1409	832

Peak Load

		PV Hosting Capacity (kW)	Hosting Capacity increase with volt/var (%)	
		Without Volt/var	4pt volt/var	6pt volt/var
Voltage Deviation	Primary	970 kW	105 %	17 %
	Regulator	288	21	0
	Secondary	1795	inf	109
Over Voltage	Primary	540	95	24
	Secondary	877	283	87

Ramp Rate Analysis

Benefit

> How often and when significant ramping events occur

Time intervals

- > 10 seconds
- > 1 & 10 minutes
- > 1 hour

Scope

- Single site: PV plant or representative single module
- Aggregated single modules

Hardware-in-the-Loop (HIL) Simulation for a Grid-Connected Inverter

Experimental Voltage Level with Voltage-VAR Control Using a Scaled System

U.S. Department of Ener

Feb 13-14, San Die

Volt-Watt Control under Pure-Inductive Source Impedance Condition

HIL simulation reveals that due to the nature of a phase-locked loop, there is no guarantee that voltwatt will increase the grid voltage

Penetration

Standards Compliance Design – A New PLL Algorithm for Abnormal Frequency Detection

A new phase-locked-loop (PLL) algorithm is proposed to add a notch filter to eliminate 120-Hz ripple for precise frequency detection

Summary IEEE 1547 Compliance Test with VT-FEEC Inverter

Abnormal voltage test results

Voltage range (%)	Disconnection Time (s)		
	IEEE 1547	FEEC Inverter Test Result	
V < 50	0.16	0.08	
50 ≤ V < 88	2.00	1.60	
110 < V < 120	1.00	0.64	
V ≥ 120	0.16	0.11	

Abnormal frequency test results

Frequency range (Hz)	Disconnection Time (s)		
	IEEE 1547	FEEC Inverter Test Result	
f > 60.5 f < 59.3	0.16	0.084	

High-Efficiency Soft-Switching Inverter

- VT soft-switching inverter achieved CEC efficiency >99%
- With natural convection, hot spot temperature was found at 51.9° after 1-hour operation → no cooling fan is needed
- Output current THD < 2% under full-load condition

Feb 13-14, San Di

19

High

Penetration

DC Distributed System Configuration 14×250W PV Panels, 3.5kW Total Installation

Front view of PV panels

Back view of PV panels

- Paralleled power optimizers for individual panels
- High overall system efficiency (>96%) with VT micro-converter and soft-switching inverter
- DC micro-grid architecture with isolation and protection at local PV panels
- Potentially low cost with more integration

A Soft-Switched Micro-converter Features Low Cost and High Efficiency 0.98

- Low component counts \rightarrow low cost
- Soft switching \rightarrow high efficiency
- Galvanic isolation \rightarrow improved safety and protection
- No aluminum electrolytic capacitors

Eliminate Electrolytic Capacitors Using Advanced Control for PV-Inverters

PV voltage loop controller design with double line frequency rejection

DC bus voltage loop controller design with double line frequency filter to avoid grid current distortion

Frequency Response Plot Showing Double-line Frequency Content Attenuation

- Using conventional proportional-integral (PI) controller for DC-DC converter, the double line frequency ripple is reduced by 16 dB (6.3X reduction)
- Using a novel PI plus quasi-resonant (QR) controller for the DC-DC converter stage, the double line frequency ripple is reduced by 46 dB (200X reduction)

Experimental Results Showing PV Voltage Ripple Elimination Using PI+QR Control

PV voltage ripple is significantly reduced with PI+QR control for the DC-DC converter → Way to eliminate electrolytic capacitor without any added penalty

Summary

Modeling and Simulation

- Website hosting measurement data and feeder models
- Statistical analysis of PV variability at distribution level
- Study of hosting capacity boundary limits
- Evaluation of smart inverters that increase hosting capacity

Power Electronics

- Development of low-cost high-efficiency power electronics:
 - > Micro-converter,
 - > Micro-inverter,
 - > String inverter
- Development of HIL simulation/hardware
- Novel abnormal voltage/ frequency detection

Jason Lai: laijs@vt.edu 540.231.4741 Jason Dominic: jcd2362@vt.edu 540.808.0217 Bin Gu: gubin@vt.edu 540.808.0217 Nathan Kees: nkees@vt.edu 540.808.0217 Ben York: benyork@vt.edu 540.808.0217 Wensong Yu: wensong@vt.edu 540.808.0217 Jeff Smith: jsmith@epri.com 865.218.8069 Tom Key : tkey@epri.com 865.218.8082 Chris Trueblood : ctrueblood@epri.com 865.218.8118 Mack Grady: mack_grady@baylor.edu 254.710.3307

Q &A AND DISCUSSION

BACKUP SLIDES

An Integrated-Boost Resonant Converter for Isolated DC-DC Stage

•Integrate a boost converter and a resonant half-bridge converter to reduce parts count

•The PWM duty cycle of S₂ controls the "boost voltage"

 $V_b = V_{in}/(1-D)$

S₂ carries boost and resonant current and operates under hard switching
S₁ operating under ZVS

•*D*₁, *D*₂ operating under ZVZCS •Simple control

-Traditional duty-cycle modulation

-Constant voltage gain over load

•Guaranteed transformer V·s balanced

Experimental Waveforms with Voltage-VAR Control Using a Scaled System

CASE A: Inverter sends real power to the grid

- Power factor = 1.0
- Equivalent PV penetration level: 88%
- Equivalent inverter KVA level: 0.88 pu
- Grid voltage increases by 3.5%

 v_g l_g P3:---Measure P1:rms(C1) P2:rms(C2) P4:freq(C4) P5:---P6:mean(Math) value 252.7 V 21.02 A 4.23 KM

CASE B: Inverter sends real and reactive power to the grid

- Power factor = 0.8 lagging
- Equivalent PV penetration level: 85%
- Equivalent inverter KVA level: 1.06 pu
- Grid voltage increases by 1.7%

Current Waveform Comparison between VT and Enphase Microinverters

- With continuous operation, VT microinverter current THD is <2.5% under full-load condition
- Enphase modulates between continuous and discontinuous current modes (CCM and DCM), resulting poorer THD (>3%).

Design of Hardware-in-the-loop Simulation

Target Hardware System Circuit Model (in PSIM)

Grid Voltage Control under Resistive-Inductive Source Impedance Condition

With resistive-inductive source impedance condition, the grid voltage V_{a} , is generally driven higher under higher penetration PV levels.

Penetratior

Hosting Capacity Comparison

- Each feeder has similar characteristics that are typically used to classify feeders (load level and voltage class)
- Two significantly different PV penetration levels can be accommodated before violating voltage criteria

Feeder Comparison				
		Feeder A	Feeder B	
Feeder	Voltage (kV)	13.2	12.47	
Characteristics	Peak Load	5 MW	6 MW	
	Minimum Load	0.8 MW	0.7 MW	
	Min Daytime Load	1.1 MW	0.7 MW	
	Existing PV (MW)	1.0	1.7	
	Total Circuit Miles	28	58	
	Minimum Hosting Capa	city (kW)		
Voltago	Primary Overvoltage	>3500	420	
voltage	Regulator Deviation	>3500	250	
	Total Fault Contribution	>3500	1685	
Protection	Sympathetic Tripping	1478	1426	
	Reduction of Reach	>3500	1489	
	Fuse Saving	1771	1426	
	Anti-Islanding – Breaker	777	390	
Customer-based				

70% of Peak Load

4% of Peak Load

Leveraging Work Throughout Industry

Categories for Daily Variability Conditions

Sandia's variability index (VI) and clearness index (CI) to classify days

Daily Variability Conditions by Season

At 1MW plant on feeder A, measured with plane-of-array pyranometer

Predicting Cloud Movement Impact on Power Distribution Systems Having Widespread PV

10-Minute Window Near 12 Noon

Example Cloud Movement over a Substation with a Total Load about 20 to 40 MW

Cloud Movement Model

For cloud shadow speed = 5 m/s, A = 250 meters, C = 300 meters For cloud shadow speed = 7 m/s, A = 350 meters, C = 420 meters

39

•When there is no shadow, use panel clear sky P_{max} for the given time of day and panel orientation.

•When inside a 50-second diameter, or A, use $P_{max}/3$.

•When inside a 5-second circular transition ring, or C - A, the power is assumed to be linearly varied between P_{max} and $P_{max}/3$ U.S. Department of Energy Feb 13-14, San Diego, CA