# SMUD STORAGE STRATEGY AND R&D PROGRAM

January 12, 2012

Mark Rawson Distributed Energy Resources R&D Program Manager





## **Topics of Discussion**

- Drivers for renewables and storage
- Opportunity for renewables and storage
- Challenges of integrating renewables
- SMUD storage strategy
- SMUD storage deployment experiences and lessons learned
- Closing remarks

## What Is Driving SMUD's Renewables and Storage Interest?

- GHG regulations
  - Reshaping energy supply
- RPS-driven solar energy additions
  - Solar peaks 4-5 hours before utility peak
  - Solar forecasting weak
  - Ramp rates can be significant
  - How much can distribution system take
  - Wind produces in off-peak periods

## **SMUD Board Policy**

Sustainable Power Supply reduces SMUD's long-term greenhouse gas emissions from generation of electricity to 10% of its 1990 carbon dioxide emission levels by 2050 (<350,000 metric tonnes/year), while assuring reliability of the system; minimizing environmental impacts on land, habitat, water quality, and air quality; and maintaining a competitive position relative to other California electricity providers.

Long Term Variations of Global Temperature and Atmospheric Carbon Dioxide



#### SMUD Reached 24% in 2010! (2,600 GWh)



## **Renewable Energy Programs**

- Utility Solar since 1981
  - 1 MW installation at Rancho Seco began operation in 1984
  - Still operating!
- Solano Wind Project late 80's
- Solar Pioneer Program mid-90's
- Green Pricing (Greenergy) 1997
- SMUD RPS Adopted in 2001 (10% in 2006; 20% in 2011)
- Local Biomass Program 2004
- CSI 2007; Solar Shares 2008
- 100 MW FIT in 2009



## **SMUD Local Renewables**

- Limited to Biomass and Solar
  - Solano Wind (233 MW) outside territory
  - Biomass = 81 MW; Solar = 3600 MW (only portion of unshaded rooftops + 13 disturbed land sites)

| – All other  |
|--------------|
| Renewables   |
| need         |
| Transmission |

|                       | 2010                       | 2010                           | 2020                       | 2020                           |
|-----------------------|----------------------------|--------------------------------|----------------------------|--------------------------------|
| Conversion<br>Pathway | Gross<br>Potential<br>(MW) | Technical<br>Potential<br>(MW) | Gross<br>Potential<br>(MW) | Technical<br>Potential<br>(MW) |
| Thermochemical        | 200                        | 61                             | 259                        | 69                             |
| Biochemical           | 26                         | 11                             | 28                         | 12                             |
| Total MW              | 226                        | 72                             | 287                        | 81                             |

## **Solar Energy Growth at SMUD**









## **PV Issues For SMUD**



- PV coupled with high efficiency measures can reduce home peak load by 55%
- Significant shift still between solar peak and system peak
- Intermittent production resulting from party cloudy conditions



## **Importance of Variability**

- Resource analysis shows that up to 50% of a large PV system output can be lost in 1 minute
- With 250 MW of PV, loss of 125 MW in 1 minute would exceed SMUD's contingency requirements
- Minute to minute load fluctuations at SMUD are much smaller ~10-20 MW
- Correlation of dispersed large systems currently not well known

# Current Approximate Monitoring Grid



## **Use for Solar Resource Dataset**

- Goal to validate and improve several different forecasting approaches for Sacramento and solar industry
- Provide feedback to NOAA on performance of NDFD for solar forecast purposes
- Understand need for any additional load following, regulation, storage resources
- Identify optimal PV plant sizing and distribution to minimize need for backup resources

## **Resource Variability Impact**

#### Clear Day - 8/15/11



#### Variable Day - 5/14/11



### Storage Could Be Mitigation Strategy For High Penetrations Of PV and Wind

- Believe SMUD will need bulk <u>and</u> distributed storage in long run
- Questions of what kind, how much of it and when, and how much will it cost
- Pursuing a multi-pronged approach:
  - Developing improved understanding of storage technologies
  - Determining the benefits of distributed storage to SMUD
    - Modeling and analytical work assess the value of different storage technologies deployed at high value sites on the T&D system
  - Conducting some distributed storage system demonstrations, monitoring performance and cost effectiveness
  - Preparing SMUD for energy storage utilization and AB2514
     Procurement Plan

## **SMUD Storage Portfolio**



## **SMUD Storage Portfolio**



#### **SMUD PV & Smart Grid Pilot at Anatolia**

DOE ARRA FOA 85 Topic 4: High Penetration Solar Development



Acknowledgement: This material is based upon work supported by the Department of Energy under Award Number DE-EE0002066.

#### **SMUD PV & Smart Grid Pilot at Anatolia**

ARRA FOA 85 Topic 4: High Penetration Solar Development



#### **Strategic Objectives and Research Questions**

| Strategic                 | Understand how the integration of energy storage could enhance the value of                                                                                                                                                                                                        |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Objective 1               | distributed PV resources within the community                                                                                                                                                                                                                                      |
|                           | <ul> <li>Does the location of energy storage significantly change the utility's ability to<br/>"firm" customer load and distributed PV capacity?</li> </ul>                                                                                                                        |
| Key Research<br>Questions | <ul> <li>How much storage is necessary to accomplish the desired PV and load firming<br/>effects?</li> </ul>                                                                                                                                                                       |
|                           | <ul> <li>Can an integrated PV/energy storage system provide service reliability benefits<br/>for customers?</li> </ul>                                                                                                                                                             |
| Strategic                 | Determine if the addition of energy storage could add value for the utility                                                                                                                                                                                                        |
| Objective 2               |                                                                                                                                                                                                                                                                                    |
| Key Research              | <ul> <li>Can energy storage in a high penetration solar deployment help support SMUD's "super-peak" from 4 PM to 7 PM, particularly when PV output drops off after 5PM?</li> <li>Does the location of energy storage significantly affect the ability of the utility to</li> </ul> |
| Questions                 | <ul><li>manage the resource?</li><li>How variable is PV output within a community or distribution feeder, and what is</li></ul>                                                                                                                                                    |
|                           | the potential operating impact for the utility?                                                                                                                                                                                                                                    |

#### **Strategic Objectives and Research Questions**

| Strategic<br>Objective 3  | Determine how to leverage SMUD's AMI investment to manage a distributed<br>PV/energy storage resource                                                                                                                                                                                                                                                   |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Key Research<br>Questions | <ul> <li>Can a smart meter be used to monitor and control a PV system, and to what extent?</li> <li>What are the practical challenges associated with using AMI for managing PV?</li> <li>What are the technical requirements for integrating inverters and smart meters, and what codes, standards and reference designs must be developed?</li> </ul> |
| Strategic                 | Determine if capacity firming and advanced pricing signals will influence the energy                                                                                                                                                                                                                                                                    |
| Objective 4               | usage behaviors of customers                                                                                                                                                                                                                                                                                                                            |
| Key Research<br>Questions | <ul> <li>Do the customers who have capacity firming capability (energy storage) behave differently than those who do not?</li> <li>Do the customers with the RES behave differently than those with CES?</li> <li>How does energy storage impact the customer's ability/desire to respond to pricing signals?</li> </ul>                                |

## **Overview of Hardware Solution**

- 55 to 65 homes total
- Control group (25 homes)
  - 2kW residential PV with inverter (existing SunPower PV)
  - NOC-to-NOC integration with SunPower provides PV and whole-house data for energy management portal
- Residential Energy Storage (RES) group (15 homes)
  - Same as control group, plus:
  - Silent Power OnDemand storage appliance (5 kW/8.8 kWh)
- Community Energy Storage (CES) group (3 units; 15-25 homes)
  - Same as control group, plus:
  - PowerHub CES system (30 kW/30 kWh)



## **Use Cases and Benefits**

| Application                   | Benefit                                                                   | Approach                                                                                                                           |  |  |
|-------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Time-Of-Use<br>Energy Cost    | Reduced electricity losses<br>(utility/rate payer)                        | Reduce grid load during high cost time-of-use daily                                                                                |  |  |
| Management                    | Reduced electricity cost (consumer)                                       |                                                                                                                                    |  |  |
| Peak Load                     | Reduced electricity losses<br>(utility/rate payer)                        | Forecast day-ahead load shifting requirements based upon historical load, weather, PV output, etc. and optimize storage            |  |  |
| Reduction                     | Reduced electricity cost (utility)                                        | dispatch to shave peak load                                                                                                        |  |  |
| Voltage<br>Support            | Reduced electricity losses<br>(utility/rate payer)                        | Using feeder and transformer monitoring voltages, dispatch storage to maintain voltage within set limits                           |  |  |
| Phase<br>Balancing            | Reduced electricity losses<br>(utility/rate payer)                        | Using feeder and transformer monitoring voltages, demonstrate ability to change loading on a particular phase                      |  |  |
| Renewables                    | Reduced CO <sub>2</sub> Emissions (society)                               | Using SCADA to monitor feeder output during net excess PV                                                                          |  |  |
| Capacity<br>Firming (society) |                                                                           | output, and local solar irradiance to estimate diminished P<br>output, vary energy storage discharge to firm PV generated<br>power |  |  |
| Renewables                    | Reduced CO <sub>2</sub> Emissions (society)                               | Charge energy storage with PV power during times of excess                                                                         |  |  |
| Energy Time<br>Shift          | Reduced SO <sub>x</sub> , NO <sub>x</sub> , PM-2.5 Emissions<br>(society) | output, then discharge energy storage later for peak shavir on the distribution system                                             |  |  |

## **NREL Transformer Monitoring**







- Twelve Distribution Monitoring Units (DMU) installed at 50 and 75kVA transformers are collecting 1 second data
  - Custom built with off-shelf hardware
  - Timing and location accuracy via GPS receiver
  - Real-time measurements transmitted via cellular modem
  - Uses phasor calculations similar to PMUs
  - Communicates using IEEE Std. C37.118 for synchrophasors
  - Voltage channels sample two 120V legs and neutral of transformer
  - Current measured on each 120V leg and neutral
  - Output includes RMS and phasor info for all sampled wave forms
  - Includes frequency of secondary voltage
  - Apparent, real and reactive power flows are calculated
  - Power factor and displacement power factor derived from power and phasor values
  - Includes PQ calculations
  - Internal DMU and external transformer temperature monitored

## **NREL Transformer Monitoring**



#### Transformer load, 11:00 PM to 12:00 AM on Sept 26, 2011



Two different transformer voltages on Sept 26, 2011





### AMI Inverter Communication and Control

#### **Inverter Communications**

- Demonstrate inverter monitoring via AMI communication from smart meter to inverter
- Demonstrate receiving data, querying for faults, sending control signals
- Vision use as actively controlled contributors versus passive devices on the grid



#### **Utility Operator Portal – Power Delivery Dashboard**

| GRIDPOINT' GCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |                               | Wednesday                                  | , January 11, 2012 | About GCC My Profile Logout                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------|--------------------------------------------|--------------------|--------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | → RES → RESO5                 |                                            |                    |                                            |
| Power Delivery Dashboard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EventLog                                           | Manage Messages               | Scheduler                                  |                    |                                            |
| Power Delivery Dasl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hboard                                             |                               |                                            |                    |                                            |
| TOTAL CAPACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | STORED GENERAT                |                                            |                    | DEMAND RESPONSE                            |
| CAPACITY 3.30 KW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STORED<br>ENERGY<br>AVAILABLE                      |                               |                                            | 3.30 kw            | AVAILABLE<br>DEMAND<br>RESPONSE            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Wednesday, January 11, 2012<br>1 02 03 04 05 06 07 | Wedne<br>08 09 10 11 12 13 14 | sday, January 11, 2012<br>15 16 17 18 19 2 | 20 21 22 23 00     | AVAILABLE<br>CAPACITY<br>-50               |
| 40 -<br>30 -<br>Stored Energy 20 -<br>10 -<br>8 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15 h                                               |                               |                                            | 2.98 h             | -40<br>-30<br>-20                          |
| Battery Power 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15 h                                               |                               |                                            | 2.98 h             | -6<br>-4<br>-2<br>-1,4                     |
| PV Power 1-<br>0.4-<br>1.2-<br>1-<br>0.6-<br>0.6-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0.4-<br>0 | 15 h                                               |                               |                                            | 2.98 h             | -1.2<br>-1<br>-0.8<br>-0.6<br>-0.4<br>-0.2 |
| Grid Power 1.2-<br>-1.2-<br>-1.2-<br>-1.2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15 h                                               |                               |                                            | 2.98 h             | -0<br>-3.6<br>-1.2<br>1.2<br>3.6<br>3.6    |
| Energy<br>Consumption<br>4-<br>Consumption<br>2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |                               |                                            |                    | -6<br>-4<br>-2                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LEGEND: SUBMITTED/C                                | OMPLETED AT RISK              | FAILED                                     | G                  |                                            |
| ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |                               |                                            |                    |                                            |

#### **Utility Operator Portal – Scheduler**

|                                       |                       | GRIDP <mark></mark> UNT | GCC                   |                                |                                |                                         | Wednesday, January 11, 2012 Logou               |
|---------------------------------------|-----------------------|-------------------------|-----------------------|--------------------------------|--------------------------------|-----------------------------------------|-------------------------------------------------|
| <b>S</b> M                            |                       |                         |                       |                                |                                |                                         | Analytics Scheduling Porta                      |
| Status Sch                            | nedule                |                         |                       |                                |                                |                                         |                                                 |
|                                       |                       |                         |                       |                                |                                |                                         |                                                 |
| Filter By Unit                        | <b>t</b> -            | Filter By F             | Event Type:           | _                              |                                | Legend                                  |                                                 |
| View All Ur                           |                       |                         | Event Types           | ▼ SE                           | T FILTERS                      | Predictive Load Shit<br>Custom Schedule |                                                 |
|                                       |                       |                         |                       |                                |                                |                                         |                                                 |
| December                              |                       | Tur                     | January 20            |                                | Fri                            | February                                | Events                                          |
| <b>Sun</b>                            | <b>Mon</b>            | <b>Tue</b>              | <b>Wed</b>            | <b>Thu</b><br>29               | 30                             | Sat                                     |                                                 |
|                                       |                       |                         |                       |                                |                                |                                         | Select a date with events to view more details. |
|                                       |                       |                         |                       |                                |                                |                                         |                                                 |
|                                       |                       |                         |                       |                                |                                |                                         |                                                 |
| 1                                     | 2                     | 3                       | 4                     | 5                              | 6                              | 7                                       |                                                 |
|                                       |                       |                         |                       | RES01<br>9:00 - 21:00<br>RES02 | RES01<br>9:00 - 21:00<br>RES02 | RES01<br>9:00 - 21:00<br>RES02          |                                                 |
|                                       |                       |                         |                       | 9:00 - 21:00<br>More           | 9:00 - 21:00<br>More           | 9:00 - 21:00<br>More                    |                                                 |
|                                       |                       |                         |                       |                                |                                |                                         |                                                 |
| 8<br>RES01                            | 9<br>RES01            | 10                      | 11<br>RES01           | 12<br>RES01                    | 13<br>RES01                    | 14<br>RES01                             |                                                 |
| 9:00 - 21:00<br>RES02                 | 9:00 - 21:00<br>RES02 |                         | 6:00 - 21:00<br>RES02 | 6:00 - 21:00<br>RES02          | 6:00 - 21:00<br>RES02          | 6:00 - 21:00<br>RES02                   |                                                 |
| 9:00 - 21:00<br>More                  | 9:00 - 21:00<br>More  |                         | 6:00 - 21:00<br>More  | 6:00 - 21:00<br>More           | 6:00 - 21:00<br>More           | 6:00 - 21:00<br>More                    |                                                 |
|                                       |                       |                         |                       |                                |                                |                                         |                                                 |
| 15<br>RES01                           | 16<br>RES01           | 17<br>RES01             | 18<br>RES01           | 19<br>RES01                    | 20<br>RES01                    | 21<br>RES01                             |                                                 |
| 6:00 - 21:00<br>RES02                 | 6:00 - 21:00<br>RES02 | 6:00 - 21:00<br>RES02   | 6:00 - 21:00<br>RES02 | 6:00 - 21:00<br>RES02          | 6:00 - 21:00<br>RES02          | 6:00 - 21:00<br>RES02                   |                                                 |
| 6:00 - 21:00<br>More                  | 6:00 - 21:00<br>More  | 6:00 - 21:00<br>More    | 6:00 - 21:00<br>More  | 6:00 - 21:00<br>More           | 6:00 - 21:00<br>More           | 6:00 - 21:00<br>More                    |                                                 |
|                                       |                       |                         |                       |                                |                                |                                         |                                                 |
| 22<br>RES01                           | 23                    | 24                      | 25                    | 26                             | 27                             | 28                                      |                                                 |
| 6:00 - 21:00<br>RES02<br>6:00 - 21:00 |                       |                         |                       |                                |                                |                                         |                                                 |
| 6:00 - 21:00<br>More                  |                       |                         |                       |                                |                                |                                         |                                                 |
|                                       |                       |                         | _                     |                                |                                |                                         |                                                 |
| 29                                    | 30                    | 31                      | 1                     |                                |                                | 4                                       |                                                 |
|                                       |                       |                         |                       |                                |                                |                                         |                                                 |
|                                       |                       |                         |                       |                                |                                |                                         | Create Event                                    |

## **Progress To Date**



## **Lessons Learned**

- Allow more time for UL listing and integration testing
- Important to educate building permitting officials and fire service on these technologies
- Close frequent customer contact is essential to success and incentives need to be robust to attract participation
- High resolution data acquisition will be the best of its kind - PV generation, storage, transformers, distribution feeder and solar meteorology
- Ample business case assessment opportunities
  - Rates, types of storage, applications, etc.

## Challenges

- Technical efforts more complex than
   expected
- More time required to coordinate and resolve issues
- More time required to negotiate contracts
- Marketing for CES customers was difficult
- Data acquisition was more complex than expected with disparate systems integrated
- Troubleshooting as a result can be more complex than expected
- Application of Time of Use rates has been a challenge when coupling energy storage and PV

## **Storage for Grid Support**

DOE ARRA FOA 36 Topic 3.6: Grid Support Storage Demonstrations Grant



Premium Power Corporation's TransFlow 2000 500-kW/6-hour zinc bromide flow-battery energy storage system

Acknowledgement: This material is based upon work supported by the Department of Energy under Award Number DE-OE0000224.

## **Storage for Grid Support**

DOE ARRA FOA 36 Topic 3.6: Grid Support Storage Demonstrations Grant

- \$12M project (\$6M DOE)
- Partners are Premium Power, National Grid, SAIC, NREL, Syracuse University
- SMUD installing two Premium Power 500kW/6 hours flow battery systems
- Will firm renewables, reduce peak load and cost to serve peak, and improve reliability
- Operating as a fleet of distribution assets
- Quantifying costs and benefits of this storage deployment to gain insights to broader application for SMUD

## **SMUD Microgrid Site**



## **SMUD Anatolia Site**



## **Use Cases and Benefits**

| Site     | Application                    | Benefit                                                                   | Approach                                                                                                                                                        |  |
|----------|--------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|          | Demand Charge                  | Reduced electricity losses (utility/rate payer)                           | When grid connected, peak shaving to reduce                                                                                                                     |  |
|          | Management                     | Reduced electricity cost (consumer)                                       | monthly demand peak customer charges                                                                                                                            |  |
|          | Time-Of-Use Energy Cost        | Reduced electricity losses (utility/rate payer)                           | When grid connected, reduce grid load durin                                                                                                                     |  |
|          | Management                     | Reduced electricity cost (consumer)                                       | high cost time-of-use daily                                                                                                                                     |  |
| SMUD HQ  | Voltage Support                | /oltage Support Reduced electricity losses (utility/rate payer)           |                                                                                                                                                                 |  |
|          | Electric Service               | Reduced sustained outages (consumer)                                      | For system outage events, provide                                                                                                                               |  |
|          | Reliability                    | Reduced momentary outages (consumer)                                      | uninterrupted service by switching to<br>microgrid islanding with power from energy<br>storage                                                                  |  |
|          |                                | Reduced CO <sub>2</sub> Emissions (society)                               | Using SCADA to monitor feeder output during                                                                                                                     |  |
|          | Renewables Capacity<br>Firming | Reduced SO <sub>x</sub> , NO <sub>x</sub> , PM-2.5 Emissions<br>(society) | net excess PV output, and local solar<br>irradiance to estimate diminished PV output,<br>vary energy storage discharge to firm PV<br>generated power            |  |
| Apatolia | Renewables Energy Time         | Reduced CO <sub>2</sub> Emissions (society)                               | Charge energy storage with PV power during                                                                                                                      |  |
|          | Shift                          | Reduced SO <sub>x</sub> , NO <sub>x</sub> , PM-2.5 Emissions<br>(society) | times of excess output, then discharge energy<br>storage later for peak shaving on the<br>distribution system                                                   |  |
|          | Voltage Support                | Reduced electricity losses (utility/rate payer)                           | When connected to the grid, voltage to be<br>monitored by SCADA, and energy storage<br>dispatched to ensure system voltages remain<br>within established limits |  |

## **Operator Portal – PPC Dashboard**

| Premiun          | n Power, Trans Flow 2000 - Mozilla Firefox                                 |                                 | _                                                                 |
|------------------|----------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------|
| jie <u>E</u> dit | <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp |                                 |                                                                   |
| 📄 Premi          | um Power, Trans Flow 2000 🛛 🗙 👘                                            |                                 |                                                                   |
|                  |                                                                            |                                 |                                                                   |
| _                | ·                                                                          |                                 | Mon Oct 26 2009, 3:02:50 PM                                       |
| Pre              | emium Power, TF20                                                          | 000                             | TF System <u>Quad 1</u> <u>Quad 2</u> <u>Quad 3</u> <u>Quad 4</u> |
|                  |                                                                            |                                 | 1                                                                 |
| Sys e            | eStop Standby Float Disc                                                   | harge Charge Rate Strip Rate    | <u>Graph Set</u> Parameters <u>System IO</u>                      |
|                  |                                                                            |                                 |                                                                   |
|                  | Command Mode                                                               | Quad #1                         | Quad #2                                                           |
|                  | Active Mode User mode                                                      | Ctrl State Manual               | Ctrl State Manual                                                 |
|                  | Command Set Name                                                           | System Mode Charge              | System Mode Neutralize                                            |
|                  | Active Command step 1 :                                                    | System SubMode Charging         | System SubMode Wait for Valves                                    |
|                  | TF2000                                                                     | AC Power 77.2                   | Percentage charged 40.3 AC Power 0.0                              |
|                  | System Mode Charge                                                         | Total Batt Power kW -70.2       | Total Batt Power kW 0.0                                           |
|                  | System SubMode                                                             |                                 |                                                                   |
|                  | Net percentage charge 39.5                                                 | Auto                            | Auto                                                              |
|                  | Net AC Power 160.1                                                         | 01#2                            | Quad #4                                                           |
|                  | Net Battery Power -145.6                                                   | Quad #3<br>Ctrl State Automatic | Ctrl State Offline                                                |
|                  | Total Batt Amp Hours 1283.5<br>Avg Quad Amp Hours 427.8                    | System Mode Charge              | System Mode NO_COMM                                               |
|                  | Faults 255                                                                 | System SubMode Charging         | System SubMode NOT_ALIVE                                          |
|                  | EStop Pressed 0                                                            | Percentage charged 42.7         | Percentage charged 0.0                                            |
|                  | Total PY Power kW 10.3                                                     | AC Power 82.9                   | AC Power 0.0                                                      |
|                  | Target Charge Rate 300.0                                                   | Total Batt Power kW -75.4       | Total Batt Power kW 0.0<br>commands                               |
|                  | Target Discharge Rate 300.0                                                |                                 |                                                                   |
|                  | Num Available Quads 1                                                      | Manual                          |                                                                   |
|                  |                                                                            | Inputs                          | Outputs                                                           |
|                  |                                                                            | Battery Sense 24V 26.3          | Compressor Enable 0                                               |
|                  |                                                                            | Front Air Temp 20.0             | Chiller Enable 0                                                  |
|                  |                                                                            | Rear Air Temp 20.3              | 3 System Bootstrap 0                                              |
|                  |                                                                            | Service Estop Pressed 1         | Battery Disconnect 0                                              |
|                  |                                                                            | System Button Pressed 0         | Battery Charge Disconnect 0                                       |
|                  |                                                                            | System Estop Enabled 0          | Service Lamp On 0                                                 |
|                  |                                                                            | Battery Gauge                   | System Lamp On 0                                                  |
|                  |                                                                            | <u>IO Graph</u>                 |                                                                   |
#### **Progress To Date**

- Completed site design and infrastructure improvements necessary to site the Transflow 2000
- Gained DOE approval of our cyber security plan
- Defined use cases and data collection plan for monitoring performance
- Will begin operator training using a simulator in late Q1 2012
- Will install units in Q2 2012
- Will collect performance data through 2014

## Summary

- GHG and renewables driving SMUD to consider storage, microgrids, advanced inverters, etc.
- R&D helping SMUD and customers to understand:
  - -Value proposition
  - -Grid integration issues
  - Realistic applications
  - Technology performance reliability, life, durability and cost

## Near Term Integration Issues – Distribution System

- Evaluating impact of variable solar resource on distribution feeder voltage levels
- Validation of caps on capacity on feeders at 100% of minimum daytime load
- Identification and testing of appropriate mitigation strategies to accommodate higher penetrations on feeders (e.g., curtailment via SmartGrid, advanced inverters, storage)
- Identification of priority areas and limits for PV on our distribution system

## Medium-Term Integration Issues – Bulk Power System

- Evaluation of variability impacts on regulation requirements
- Evaluation of forecasting error impacts on ancillary services requirements and associated costs
- Redesign of distribution system as a supply source to bulk power system

#### **Issues & Need for R&D**

- R&D provides advancements such as:
  - New Knowledge (variability, feeder penetration limits, hi-penetration impacts, etc.)
  - New Modeling & Simulation Tools
  - New Forecasting Methods
  - New Inverter Technology
  - Integration with Smart Grid (communications & control) and other New Techs (PEVs, DSM, etc.)
  - New, Cost-Competitive Storage Options
  - 21st Century Electricity Distribution System!

# **High Penetration PV R&D**

- \$2.2M grant from CPUC CSI R&D (HECO partner) to better understand & develop mitigation strategies for high penetration PV on distribution grid
- Multi-pronged approach
  - High density service territorywide solar monitoring and forecasting validation
  - Monitoring of high penetration circuits
  - Distribution/Sub-transmission modeling of loads and PV on high penetration circuits, identification of stress points
  - Mapping of high value locations for PV
  - Real-time display of stressed circuits and renewable resource outputs



## High Density Solar Monitoring and Forecasting

- Working with contractor NEOVirtus Engineering
  - Deploy network of 71 solar monitoring stations across
    Sacramento on distribution poles and in substations
  - Collect high frequency 1-minute solar resource data (global for 66 stations, global, direct, diffuse for 4 stations)
  - Develop solar forecasting approach using National
    Weather Service 3 hour forecasts on 5 km grid
  - Validate forecasting approach using solar data for 3 hour ahead and day ahead forecasts

## Value of Storage for SMUD

Graphic summarizes present value of different storage applications

- Transportable storage used to defer distribution investments
- Distributed energy storage (DESS) installed adjacent to distribution transformers
- Commercial customer sited storage used to reduce energy costs and demand charges
- Residential and commercial customer sited storage aggregated by a 3<sup>rd</sup> Party and value sold to utility
   Results — some storage



- Results some storage systems could be cost effective for SMUD and SMUD customers at \$400/kW-h price point
- Current zinc-bromide flow battery system is within this cost today
- Today though, storage systems remain unproven for life, durability, reliability and cost
  - Current R&D projects are addressing these uncertainties

Source: Energy Storage Benefits for SMUD, EPRI/E3, October 2010 10

#### **Anatolia Project Goals**

#### The Opportunity

Integrating large amounts of distributed renewable energy is critical to California achieving its current Renewable Portfolio Standard target of 33% renewable energy. Moreover, it is increasingly clear that distributed solar PV, both in rooftop and ground- mounted applications, represents the greatest opportunity for implementing distributed renewable energy in California over the next 10 years.

#### The Challenge

**Technical Issue 1:** High penetration of grid-connected PV systems cannot be fully integrated into the Smart Grid until there is sufficient two-way communication and control capability between the utility and PV inverters.

**Technical Issue 2:** The production characteristics of distributed PV in a high penetration scenario have not been sufficiently tested, and utilities have not been able to develop adequate models and forecasting techniques with which to consider distributed PV as a grid resource.

**Technical Issue 3:** While energy storage is seen as a potential solution for "firming" the variable output of PV, there is a lack of experimental data to show how effective storage might be for overcoming these problems.

#### **Residential Energy Storage Group**



## **Residential Energy Storage Group**

- Functional specifications & Assumptions
  - Same specifications for PV system as for Control/Baseline Group
  - Silent Power OnDemand appliance provides in-home energy storage
    - 5 kW peak output
    - Saft Solion Lithium-Ion batteries (~8.8 kWh usable)
    - On-board software is integrated with GridPoint server
  - Communications through broadband connection
  - SMUD will handle interconnect agreements or other regulatory considerations for battery dispatch
  - GridPoint will provide documentation and support for installation
  - SunPower has primary responsibilities for in-home installation given existing customer relationships

#### **Residential Energy Storage Group**



# Community Energy Storage Group



# **Community Energy Storage Group**

- Functional specifications & Assumptions
  - Same specifications for PV system as for Control/Baseline
    Group
  - Lithium-Ion batteries (~30 kWh usable)
  - CES system peak output of 30 kW (undersized relative to 50 kVA secondary transformers)
  - GEM and Raven cell modem (within CES enclosure) will provide communications between GridPoint and CES
    - External antenna for the Raven modem
  - SMUD will provide equipment isolation on primary (6.9 kV) side of transformer
  - GridPoint will provide documentation and support for installation
  - Installation will be conducted by SMUD line crews under the direct supervision of GridPoint personnel

#### **Anatolia Site Data Flow**



## SMUD Operations Center PV/Storage Demo





- New storage deployment to augment planned 1.2MW PV Plant
- \$4.2M grant from CEC PIER
- Partners Satcon (prime), A123 and SMUD
- Advanced technologies:
  - Satcon 500kW Solstice advanced inverter technology
  - A123 500kW/500kWh lithium ion battery system
- Objectives
  - Minimize impact of variability
  - Control ramp rates
  - Voltage regulation and voltage sag mitigation
  - Peak load shifting

## **Solar EV Charge Port**

- EPRI FIAMM SatCon project to augment 80kW PV array
- SatCon 50kW PowerPlus inverter
- FIAMM NaNiCl 50kW/100kWh
  - High specific energy (120 Wh/kg)
  - High temperature battery 260-360°C
  - Long life and high reliability
  - Not susceptible to high ambient temp
  - Planned location for plug-in hybrid charging
- Objectives
  - Minimize impact of PV variability
  - Control PV and PHEV charger ramp rates
  - Voltage regulation and voltage sag mitigation
  - Peak load shifting



#### SMUD Projected Resource Mix Through 2050



## **Expected Cost Reductions For Li+**



- Source: Lithium-ion Energy Storage Market Opportunities, Application Value Analysis and Technology Gap Assessment, EPRI Publication Number 1020074
- Production of 1,000 MWh of PEV batteries per year would result in \$600/kW-h (100,000 vehicles assuming 20kW-h per battery; \$12,000 PEV battery pack)
- Production of 10,000 MWh of PEV batteries per year would result in \$350/kW-h (500,000 vehicles; \$7,000 PEV battery pack)

Note: Best fit curve for a family of Li-ion cost projections, including ANL (2009), EPRI (2007), Miller (2006), CARB (2007), and TIAX (2009)

- Cost estimates in-line with projections provided to EPRI by leading Li-ion battery vendors for 2011 and 2015.
- Future stationary applications for lithium-ion can be on order of \$400/kW-h (includes balance of plant costs for power electronics and utility interconnection)

#### **Microgrid Site Data Flow**

