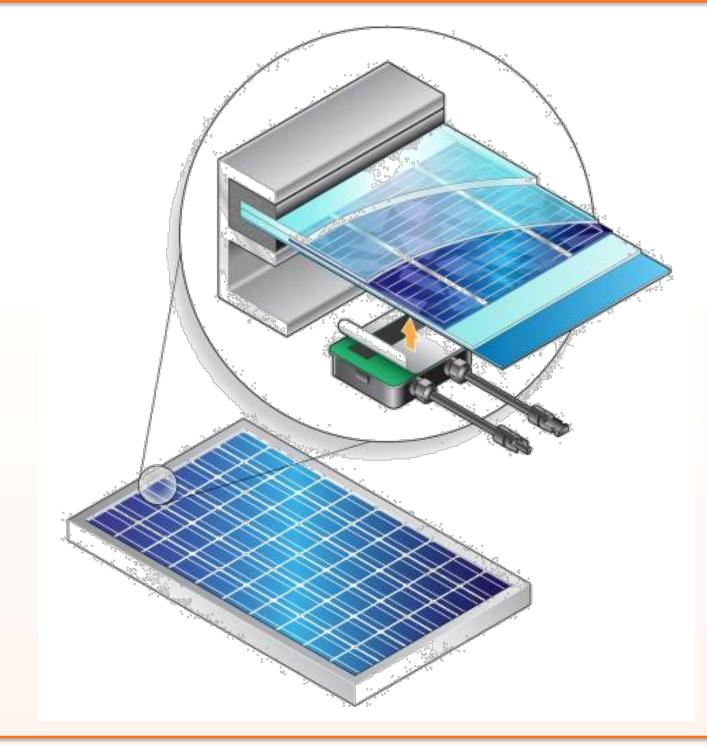
Adhesion of Encapsulating Films Used in PV Module Manufacturing

Christian Honeker, Maryann Kenney Saint-Gobain Performance Plastics 9 Goddard Rd, Northborough, Massachusetts 01532

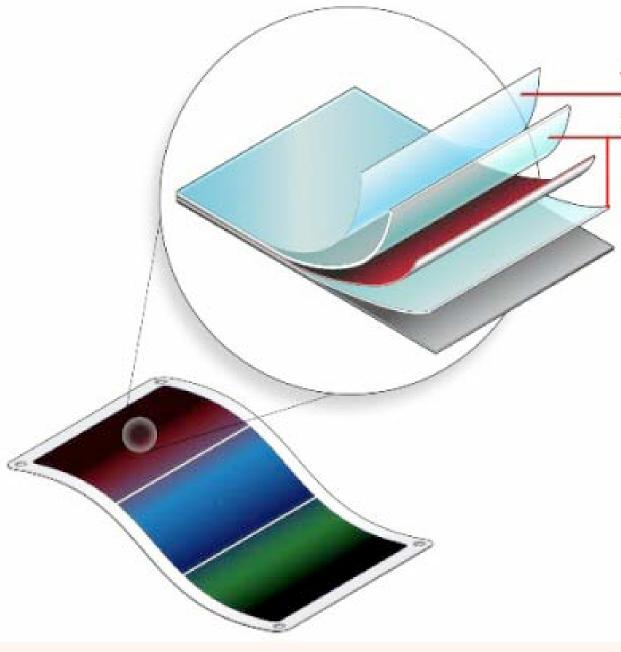
mer-based films are preferred as frontsheets for thin film flexible PV modules as

Fluoropolymer-based films are preferred as frontsheets for thin film flexible PV modules as they provide:

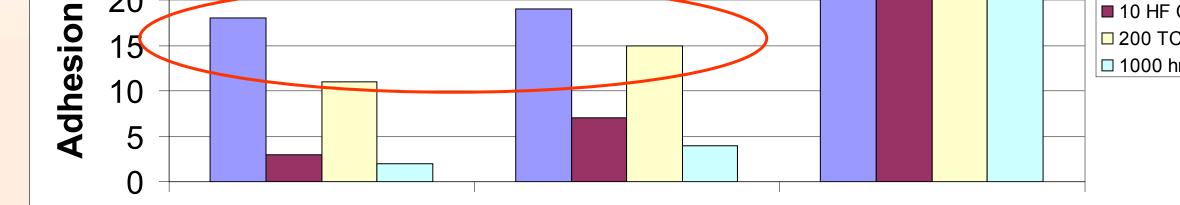

- Excellent resistance to UV, temperature and chemicals for long term weather protection.
- Light weight for flexibility.
- High light transmission for optimal efficiency.
- Low surface energy to reduce soiling.

The most common fluoropolymer used today as frontsheets in PV modules is ETFE. The ETFE film is typically bonded to the solar cell with an EVA encapsulant to form a front surface protective leminate

Strong ETFE-EVA adhesion is a critical requirement to ensure long-term durability of PV modules. However, ETFE's low surface energy and inertness is a challenge to achieve sufficient EVA adhesion.

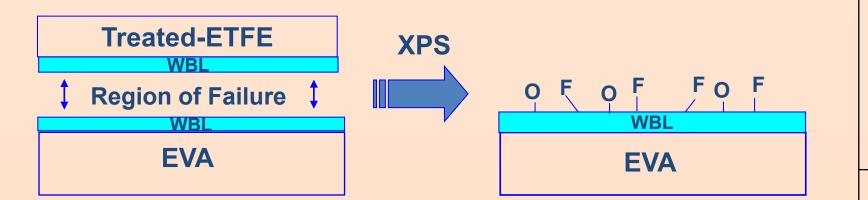

In this study, several surface treatment methods (Corona, Plasma and Saint-Gobain's C-treatment) were explored for their effectiveness in modifying the ETFE surface to achieve adequate adhesion to EVA.

ETFE treated with Corona and Plasma treatments were found to give significantly lower adhesion strength to EVA and are therefore unacceptable for PV applications. Saint Gobain proprietary treatment yielded higher adhesion strength.


Surface Treatment Technologies

Corona	Plasma	C-Treatment	
		Saint Gobain Proprietary	
High Energy Filamentary Discharge	High Energy Glow Discharge	High Energy Treatment	

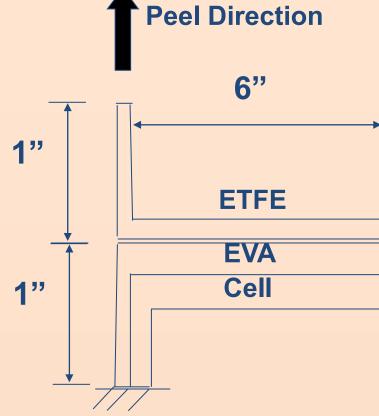
Failure Mode: Peel (Adhesive Failure) Adhesion Performance Failure Mode: Film Break (Cohesive Failure) Image: Comparison of the state of the sta


Corona Plasma C-Treatment (after 3 mo storage) (after 3 mo storage) (after 6 mo storage)

Treatment Type

Lamination Condition: 145°C, 1300 mbar, total lamination time: 12.5 min Test Method: "T"-peel

Comparison of Treatment Technologies


Postulated Failure: Weak Boundary Layer (WBL)

Samples	F (%)
EVA surface before lamina	tion 0
EVA surface after peel	27

	Corona	Plasma	C-Treatment	
Level of Polar Groups by X-Ray Photoelectron Spectroscopy (XPS)	7.6 %	4.6 %	9 %	
Evidence of Weak Boundary Layer	Yes	Yes	Νο	
Adhesion to EVA (After Aging)	X	X	\checkmark	
Stability of Treatment (> 6 months)	X	X	\checkmark	

ETFE

EVA

Lightswitch Complete

Advantages

Production Efficiencies
Reduced Lay-up
Reduced Defects
Lower cost
Less packaging
Less shipping

Pre-laminate of ETFE with EVA

Now available at widths up to 2 m

- Saint Gobain's C-treatment is more stable and long lasting compared to Corona and Plasma treatments.
- Adhesion performance of Lightswitch[®] ETFE to Lightswitch[®] EVA remains strong even after undergoing the accelerated aging tests required for PV applications.
- ETFE/EVA pre-lamination (Lightswitch Complete) simplifies processing, reduces defects as well as costs.

SOLAR

This poster contains no confidential information.