Demonstrating Reliability of Ultra Barrier Solar Films for Flexible PV Applications

the Future

Tracie Berniard Mark Roehrig Bill Murray Alan Nachtigal Joe Spagnola Joe Pieper

2012 NREL PV Module Reliability Workshop

Golden, Colorado

February 28 – March 1, 2012

March 1, 2012

Outline

- 1. 3M Ultra Barrier Solar Film Product Overview
- 2. Challenges Measuring WVTR at Ultra Barrier Levels
- 3. Demonstrating Reliability
- 4. Summary

3M Ultra Barrier Solar Film Overview

Advantages of Flexible PV Modules

- Durable film with outstanding moisture barrier properties and high light transmission
- Enables high efficiency flexible PV modules to significantly reduce installation costs

Light weight \rightarrow 1/8th compared with glass-on-glass

Lower Balance of System costs \rightarrow less labor and no mechanical racking Higher packing density \rightarrow Significantly more kW per shipping container Higher energy output \rightarrow Better transmission and off-angle performance Large area modules \rightarrow Lower relative "fixed" module costs Lower manufacturing cost \rightarrow Fully automated roll to roll processing

Ultra-Barrier Requirements: 10⁻⁶ to 10⁻⁴ g/m²day for 25 year

Water vapor migrates to electrode and degrades electrical contacts

Degradation in Efficiency in CIGS Exposure to Water (85%RH & 85°C)

•D.J. Coyle, etal, 2009 34th IEEE, pg. 001943 (2009)

- 3M has been developing ultra barrier technology for over a decade
- Over 50 applications and 20 granted patents
- Currently validating 1.2m wide film from manufacturing line

3M

Description

Designed to address the needs of the flexible thin film solar manufacturers, 3M[™] Ultra Barrier Solar Film acts as a replacement for glass with its high light transmission, superb moisture barrier performance and excellent weatherability. 3M combined its knowledge of polymer films, adhesives and advanced materials to deliver a high performing, multi-layered front sheet barrier film to the solar industry.

Features

- Good optical transmission from 400-1400 nm
- Very low moisture vapor transmission rate
- Excellent UV stability
- Flexible

Key Highlights

- UL Certified Component (E316895)
- WVTR = $5 \times 10^{-4} \text{ g/m}^2/\text{day} @ 23^{\circ}\text{C} 85^{\circ}\text{RH}$
- Transmission >89% (Avg 400 nm-1400 nm)
- Low Shrinkage
- Partial Discharge 1,000V
- Low CTE

Typical Properties (Data not for specification purposes)

Property	Test Method	Value*	Comment
		Mechanical	
Thickness	ASTM D 6988	.229 mm (.009")	
Width	to a straight and the	1.2 meters (47.24")	
Tensile Strength	ASTM D 882	106 MPa	
Elongation	ASTM D 5026	157%	I.
	And a second	Optical	
Optical Transmission	3M	>89%	Average (400 – 1400 nm)
		Thermal	
Processing Temperature		150°C for <15 min	
Operating Temperature	1	-40 to 100°C	
Storage Temperature			
		Electrical	
Dielectric	ASTM D 149	>10KV	
Partial Discharge	IEC 61730-2 MST 15	≥1000V	
		Other	
Moisture Vapor See Application Guid		<5 × 10-4 g/m ² /day	@ 23°C 85% BH
Transmission Rate	oco repricedon duido	So A to grin rudy	S 20 003/0111
Outdoor Exposure	UL746C	f2	Water immersion and UV exposure
Certifications	UL Recognized Component		E316895
ociunidations	TUV		

* Values listed are preliminary and for reference only.

.

Enabling Lightweight, Flexible, Roof Top Solar Modules

Property	Status	Goal	Current	Comment
WVTR (g/m²day)		As low as 10 ⁻⁶	5.0 x 10 ⁻⁵	NREL independently verified w/eCa >6000hrs 45C/85RH
Transmission		Entitlement of 94%	90%	2% gain through processing changes
Production Scale		Up to 2m	1.2m	1.2m wide films being made for qualification and certification
Product Certification		Certified Component and Module	UL, IEC certified from pilot line	Certifications with 1.2m film in progress
Product Lifetime (yr)		>25	Validation in progress	Service Life Prediction work and outdoor correlations in testing

NREL e-Ca Test 45C, 85%RH

For information on e-Ca test method: Quantitative calcium resistivity based method for accurate and scalable water vapor transmission rate measurement, *Reese, M.O. , Dameron, A.A., Kempe, M.D. ,National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, United States* Review of Scientific Instruments, Volume 82, Issue 8, August 2011, Article number 085101

3M Ultra Barrier Transmission Curve

Challenges in Measuring WVTR

March 1, 2012

Comparative Measurement Capability

Measurement Methods

Measurement	Source	Lower Detection Limit (g/m²/day)	Minimum Test Time Required (hours)
Infrared Sensor	Mocon TM	5x10 ⁻³	50 hours
Coulometric Sensor	Mocon TM	5x10 ⁴	200 hours
Calcium (Resistance)	NREL	1x10 ⁻⁶	200-1000
Calcium (Optical)	ЗМ	1x10 ⁻⁶	200-1000
Pulsed Valve Mass Spectrometry	ЗМ	1x10 ⁻⁵ demonstrated; Lower correlation possible	8
Tritiated Water	General Atomics	1x10 ⁸	100

Comparative Measurement Capability

Measurement Methods

Measurement	Source	Lower Detection Limit (g/m²/day)	Minimum Test Time Required (hours)
Infrared Sensor	Mocon TM	5x10 ⁻³	50 hours
Coulometric Sensor	Mocon TM	5x10 ⁻⁴	200 hours
Calcium (Resistance)	NREL	1x10 ⁻⁶	200-1000
Calcium (Optical)	ЭМ	1x10 ⁻⁶	200-1000
Pulsed Valve Mass Spectrometry	ЭМ	1x10 ⁻⁵ demonstrated; Lower correlation possible	8
Tritiated Water	General Atomics	1x10 ⁻⁸	100

3M Developed Mass Spec Tool

5x higher throughput than Mocon™ Permatran 100x improved barrier quality detection

Mass Spectrometry Measurements Correlate to WVTR

Mass Spec Signal @50°C (x10⁻⁸ counts/area·sec)

Recent MSA

Demonstrating Reliability

March 1, 2012

Demonstrating Reliability

Flex modules and "mock" modules

Outdoor Field Test Data

Indoor Testing Qualification Test to Failure Service Life Prediction **Product Lifetime**

	Equivalent TUV	WVTR
Cycle	(MJ/m2)*	(gm/m2-day)
	373	<.005
ASTM G155	746	<.005
(modified)	932	<.005
	1865	<.005
		WVTR
Cycle	Time (hours)	(gm/m2-day)
	1000	<.005
	2000	<.005
	4000	<.005

*Total UV Dose (TUV) is the time integrated energy over the range 295-385 nm

Note that 1,000MJ/m² is roughly equivalent to 9,300 hours in ASTM G155 Cycle 1

March 1, 2012

Natural Outdoor Exposure Multiple Locations and Environments

Static Racks (5° or latitude w/ backing)

Accelerated Indoor Exposure &

Lifetime Modeling

- %RH
- Temperature

Accelerated Outdoor Exposure

2x to 5x UV range acceleration

Mirrored Enclosure

G90-type

Large area G90-type

SWAT Exposure

Sequential Weathering Accelerated Test

Accelerated Outdoor

+ Damp Heat

+ Humidity Freeze

+ repeat

			2011						* 2012																
Location	Exposure Type	J	F	М	Α	М	J	J	Α	S	0	Ν	D	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D
	Natural Outdoor Static Rack																								
	Accelerated Outdoor 2.1x																								
Arizona	Accelerated Outdoor 5x																								
	SWAT																								
	Outdoor Tracking Bed																								
Florida	Natural Outdoor Static Rack																								
Colorado	Natural Outdoor Static Rack																								
	Natural Outdoor Static Rack																								
Minnesota	SWAT																								
	Indoor																								
			outdoor with no acceleration																						
			ассе	elerat	ted v	v/ nig	ght s	pray																	
			indoor humidity-freeze																						
			indoor damp-heat																						
			indoor controlled T, RH & irrad.																						

Modules with Modules with embedded embedded TCs TCs 40-50C 40-50C Ambient Ambient

Data for Simulated Rooftop Mounted Flex Modules Outside

Rea	()		•
3			
	-	-	

- Controlled
- Irradiance
- %RH
- Temperature

Temperature	Relative	Irradiance at
	Humidity	340nm
BPT1	RH1	lrr1
BPT2	RH1	lrr1
BPT1	RH3	lrr1
BPT1	RH1	Irr3
BPT2	RH2	Irr2

- Five unique accelerated stress conditions
- Multiple specimens per condition
- Performance parameters measured monthly
- Time to failure (80% initial Pmax) estimated by regression, per specimen

3D Scatterplot of T(k) vs %RH vs Irr @ 340 nm

Summary

- \blacktriangleright WVTR as low as 10⁻⁵ g/m² day
- Developing fast, sensitive test for WVTR based on mass spec
- Reliability Test Plan Initiated and Collecting Data on Flex Modules, Glass Module controls and Film-Only Performance (%T, color, T&E, WVTR)
- Scale-up: Manufacturing Line in Columbia, Missouri
- > 1.2m wide film with capability to go to 2m
- Launch of product expected Q2 2012

Acknowledgment: "This material is based upon work supported by the Department of Energy under Award DE-EE0004739."

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

