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I Prologue

s Single stress testing success:
m 1978 - 1986 - Large JPL body of work on
specific PVB/EVA Systems.

s Damp Heat Manifestations
m 169 hrs at 70C, 90%RH, Block I A
m 720hrs at 40C/93%RH, CEC 501 i
m 480hrs at 90C, 95%RH, CEC 502 sl -
» 1989->1000hrs 85/85, JIS C 8917 - BostoN
1 PHOENIX
- 720
s Otth and Ross (1984) 3 e
s “Rule-of-Thumb” 10° ~ 2x also gt A m;
m 1C=19%RH ,i_: !n3t / \ s ‘5§
m 1000-hour Damp Heat ~ 20 years in Miami, i 1'3“:&:;"5’;5"3},\\ o
Florida (sort of... 2l
( ) : \
s New Durability offerings at 2x + the w0l
qualification standards. +
1 1 B A T | | I R . i
. . . . 1) 00 150 200
s Question: How do we interpret this result in . S CHL TEWP, (') + B 14 ,
! o Figure 2. Temperature-humidity test duration
a reliability-relevant way. equivalent to 20-year field exposure

___at indicated sites,

[
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I Context - When do we care?

Design

» Drawings

» Tolerance
Stackup

+ BOM

* Manufacturability

Product Mission Functional
* Application Requirements
Customer > and Specs —>
Requirements
+ System
* Warranty
- * Sub systems
Requirements
: + Components
* Price

Reliability

Quality

v

Process FMEA
and Quality

Design FMEA

and Risk
Prioritization

+ System
* Sub systems and

Components

| Product |

System, Sub-

system and
Component
Engineering

» Single-stress
qualification testing

Qualification
Testing
Sequence

* Internal - Gate

» External -
Certification

Design
Qualified

Restrict discussion to a performance-degradation-
only failure mode not an electrical or mechanical

vontrol

» Solaria requirements
+ Site audit
» Ongoing sampling

Requirements

Design

\4

T

SAFETY issue.

+ System

* Sub systems and
Components

* Procedures

T

Qualified

v

Statistical
Process
Control

« KPIs

» Pass/fail CL and
» Trend behavior

* Quality inspection

against pass/fail
requirements

A

Returns

Order

A 4

Solaria © 2012

Ongoing Testing
+ KPIs

» Tier 1 — Production
« Tier 2 — Quality

* Tier 4 — Outdoor

» Fulfillment

SJLARIA. @



| Restriction - Damp Heat Only

s &

Do not perceive a significant risk of a

[ PID failure (negative bias of p+ cells)

—— HOWEVER - 2000 hours of DH
produces ~20% Pmax degradation.
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| EL Observations

Primary impact ~
series resistance
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| Where to begin

m  Must understand consequence of “shortened” time-to-failure in
OV Damp Heat.

m Modeling
m Accelerated Modeling - Peck/Power Law and Exponential Corrosion

m Degradation Modeling - Extrapolation of reaction rates to field conditions

m Start with the Solaria product design...
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WVTR as a function of EVA transmission
across sunny side of PV cell
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Fick’s Diffusion: f = —DVC

2006, Michael Kempe, Modeling of Rates of Moisture Ingress into Photovoltaic Modules, Solar Energy Materials & Solar Cells, Vol 90, 2006
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Acceleration Model 1 -
Peck/Power Law

m 1986, Stewart Peck
m Survey of all available data on the corrosion of silicon-

aluminum systems in plastic packages.
m Goal was to identify a basic relationship that could be used to

accelerate Damp Heat testing (85°C, 85%RH).

m Basic form Expanded form
Ea Ea

TF=A-RH™"-e" TF=A -RH" - f(V)-e¥

According to the present model, acceleration fac-
tors over B5/85 results include the following:

Jedec Test Method A110-B

Condition Acceleration
%u % ~62.5 hours—->1k hrs Damp Heat
1300 b 121 C and 100%RH
150/100 77
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l Durability Cell Comparison

m Same construction coupons varying only the cell supplier.
m Primary objective, corrosion tolerance in the Damp Heat
test.

9 Supplier Assembly Coupons Supplier A
125°C 100%RH )
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Supplier B

L 1
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60.0% - Supplier
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3 e
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l Design of Experiments

Power-law humidity model [42] _
TF = Ay (RE ”—ne,{p(ﬁ_) Semiconductor corrosion
B "
Exponential humidity model [37-44]: fallure mOdeIS
Handbook of Semiconductor Manufacturing Technology,
TF = A Q edited by Robert Doering, Yoshio Nishi, CRC Press,
= Apexp(—a- RH)exp -

Ky1 2007.

To solve these equations — several factors + time + money!

n

A/B/C 85°C 85%

A/B/C 110°C 100%

A/B/C 120°C 100%

A/B/C 125°C 100% — Initial DOE
A/B/C 130°C 80%

A/B/C 130°C 90%

A/B/C 130°C 95%
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r Cell Type A- 25 year window at 5%
significance
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r Cell Type B - 25 year window at 5%
significance
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r Cell Type C - 25 year window at 5%
significance
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l Acceleration Model Significance
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l Divergence at Low Humidity - Expected

|

]

——\
N ——

—_

- Poor
Agreement
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15
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l How to Reconcile?

Fill in the Blanks!!

Data are being collected at
120°C and 9%RH

m Prediction Peck A = 20.6 years
m Prediction Exponential A = 3600 hrs

m Prediction Peck B = 8.96 years
m  Prediction Exponential B = 2700 hrs

m C-type cells are predicted to last over
1-year with the Exponential model...

Also gathering data at
95°C and 80%RH to
Refine Crossover Behavior
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l Modeling Product Temperature in the Field

PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS
Prog. Photovolt: Res. Appl. (2011)
Published online in Wiley Online Library iwileyonlinelibrary.com). DOI: 10.1002/pip. 1103

Methodology and

apprOaCh from : ———————> RESEARCH ARTICLE

Evaluation of high-temperature exposure of

+ photovoltaic modules
. . Sarah Kurtz'®, Kent Whitfield?, G. TamizhMani®, Michael Koehl*, David Miller', James Jovces,
SNL CoeﬁICIentS for SOIarIa John Wohlgemuth', Nick Bosco', Michael Kempe' and Timothy Zgonena®

(2J u nezo 1 1 )- ; National Renewable Energy Laboratory, Golden, CO, USA
" Solaria, Fremont, CA, USA
_— 3 53 b_ O 077 AT_B 3 TUV Rheinland PTL, Tempe, AZ, USA
a=-o. y NTTUL ’ - * Fraunhofer ISE, Freiburg, Germany
CO m pa ri SO n to N eW 5 Undenwriters Laboratories Inc., Northbrook, IL, USA

Mexico Test Site e e ®

I-30000

Conclusion: Method 2500
provides an ability to o0
predict Tm to £5°C at ] 1500

95%confidence J o000
Could also use =

Count

-ttt
20 -10 0 10 20

David Faiman's ———
approach iy o ol e
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l Isobaric Heating — Module RH from Ambient

[ |

During the day, module is typically 20
to 30 C above ambient. At night, re-
radiation may make module slightly
cooler than ambient.

120
100
U 80 -
F :
- === lodule Temp °C
g 60
2 H e ol RH %
£
Z o s Evironment RH
20
\
0 I I I I I I I
4500 4550 4600 4650 4700 4750 4800 4850 4900 4850 5000
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l Module Temperature and Humidity

RH{) and T(°C)

£
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Miami, FL TMY3 Simulation

Would not properly account for the out-of-phase nature of the
relationship between the two.

Recall that design does not have significant phase-lag, so we are
assuming that it is irrelevant for now.

Need a numerical integration method.
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Degradation Model

m Assume a power law or an exponential corrosion model
will enable us to predict a time-to-failure, TF, based on
varying module temperature T, (t) and effective module
humidity RH,(t).

m Furthermore, define a extent-of-reaction variable X, such
that 07 Pmax=100%,7=0

1: Pmax =80%,¢t=TF

m Where TF=TF(RH,,,T,,) from the earlier acceleration
models.

m If we define X=t/TF (or R*t) we also see that

foef 1,
) TF(RH, (1),T, (1))

0
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Making a Field Connection

m We consider, one typical year, where, using the
exponential corrosion accelerated model,

Ea
TF(Tm,,RHm,) = A* o D RAM@) 4 5 A-Tm(z‘)

t' 1 lyear 1 _Eu4
X':J‘ df = J‘ s P REM() A-Tm(t)dt
E
0 A *e—b-RHm(t) % o %-Tm(t) 0

m As all typical years are the same, the integrand becomes

a constant reaction rate such that
X'=R*(lyear)

and at failure, 1 = R*TF (years)

or TF =+ =L
R X
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Finally

m  Numerical integration method over a one-year weather file and
presume that this weather pattern repeats itself indefinitely.

12839 Miami, FL-3

Reaction Extent after One Year
Time to Failure (Years)

725090 Boston, MA -5

Reaction Extent after One Year
Time to Failure (Years)

722780 Phoenix, AZ -7

Reaction Extent after One Year
Time to Failure (Years)

A-Power B-Power C-Power A-Exponential B-Exponential C-Exponential
4.69% 4.88% 2.22% 6.26% 8.01% 2.70%

21 20 45 16 15 37
A-Power B-Power C-Power A-Exponential B-Exponential C-Exponential
1.78% 1.83% 0.82% 2.46% 2.60% 0.99%
56 55 122 41 38 101
A-Power B-Power C-Power A-Exponential B-Exponential C-Exponential
0.64% 0.78% 0.16% 3.50% 4.45% 0.59%
156 127 022 29 22 165

m Divergence between Power Law and Exponential
Models extreme for dry climates!

22
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l More Work Needed

m Longer duration data at lower stress levels mandatory

because at highly accelerated conditions:
m Effect of measurement uncertainty exaggerated
m Effect of testing perturbations exaggerated.

m Real effort — Validation
m Must corroborate
predictions against a test!

T

‘ Period i
Peak

Ramp Down Ramp Up
Trough

t

m Starting with 125°C, 100%RH
to a 85°C, 85%RH trough
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Conclusions

m Damp Heat has been the standard corrosion test for well
over 30 years.

s Remains an important milestone for certification and will always
have a place in my heart.

s Cannot alone enable reliability prediction.
s Must perform multiple-stress tests to understand risk.

m Interpretation requires a modeling approach. Shown here:
— Acceleration Models (Peck/Power Law or Exponential Corrosion)

— Degradation Modeling (Linear extrapolation based on a constant reaction
rate calculated over a typical meteorological year)

» Presumes knowledge of module temperature and “module” humidity

» Shown here was an isobaric approximation for *module” humidity based on an
assumption of infinitely fast mass transfer ~clear approximation

m Running a 2000-3000 hour Damp Heat test will not
guarantee a 25-year life!
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