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Outline

• Historical Degradation Rates (Rd)

• Importance of  Uncertainty

•Traditional way to determine Rd

• Alternative methodologies  - Classical Decomposition , ARIMA

• Impact of outliers, data shifts, missing data 

• Correction for data shifts

• Determination of Rd in shorter time
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Introduction - PV Publications

Number of Publications on Google Scholar

Different search engine. Web of Science, Scirus, INSPEC 
etc.  vertical axis will be different 
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Historical Degradation Rates
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Degradation Rates (Rd) most often reported
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Outdoor PV on Cyprus_Makrides_Cyprus_2009
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PV degradation_Vignola_UofOregon_2008
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PV degradation_King_Sandia_2003
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PV degradation_Vignola_UofOregon_2008
Measuring Degradation Rates without Irradiance Data_Pulver_UofA_PVSC_2010
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PV performance_Carr_Australia_2005
Improved Power ratingsd_Kimber_PVSC_2009
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Historical Degradation Rates

Installation
Pre: before 2000
Post: after 2000

All technologies show some degradation rates around 0 %/year for modules installed after 2000.

Degradation Rates (Rd) most often reported
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Degradation Rates

Both data sets have the same degradation rate!

How can you distinguish the 2 data sets?
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Degradation Rate Uncertainty Impact

Uncertainty

Uncertainty for Data set(1) small  Rd looks believable

Uncertainty for Data set(2) large  2 different slopes
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Degradation Rate Uncertainty Impact

Monte Carlo Simulation of Energy ProductionUncertainty

Energy production  Levelized Cost of Energy
Assumption: 
Same Degradation Rate: 1.0%/year
Energy production for 15 year lifetime system
1st-year production 100%
Discount rate: 6%±1%

Larger Uncertainty leads to broader distribution  higher risk

Uncertainty for Data set(1) small  Rd looks believable

Uncertainty for Data set(2) large  2 different slopes
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RD Uncertainty Impact on Warranty

Warranty often twofold: 90% after 10 years, 80% after 25 years

Power Production after 10 years Power Production after 25 years

Chance to invoke warranty:

0.7 %/year uncertainty = 36%
0.2 %/year uncertainty = 4%

Chance to invoke warranty:

0.7 %/year uncertainty = 47%
0.2 %/year uncertainty = 16%
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2. Sandia Model

3. BEW Model

Degradation Rate Determination

Rating

( )wsaTaEaaEP ambient ⋅+⋅+⋅+⋅= 4321
PTC conditions: 
E=1000 W/m2, Tamb=20ºC, w=1m/s

Time series + Linear Fit, Standard Least Squares 
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Kimber A, Dierauf T, Mitchell L, Whitaker C, Townsend T, Newmiller J, King D, Granata J, Emery K, Osterwald C, Myers D, Marion B, Pligavko A, Panchula A, Levitsky T, Forbess J  
Talmud F. Improved Test Method to Verify the Power Rating of a Photovoltaic (PV) Project. Proceedings of the 34th IEEE PV Specialist Conference, Philadelphia, 2009.
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PERT – Degradation Rates

Performance Energy Rating Testbed = 
PERT

More than 40 Modules, 
> 10 manufacturers, 
Monitoring time: 2 yrs-16 yrs

Appears that CdTe, CIGS & poly-Si improved, although sample size is small 

pre post post post postprepre pre pre
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PERT – Degradation Rate Uncertainty

Performance Energy Rating Testbed = 
PERT

Pmax + PVUSA multiple regression  Degradation Rate

Traditional Method  need 3-5 years to determine degradation rate*.

3-5 Years: Uncertainty is between (0.9-0.6) %/year 

*Osterwald CR, Adelstein J, del Cueto JA, Kroposki B, Trudell D, Moriarty T. Proc. of the 4th IEEE World Conference on Photovoltaic Energy Conversion, Hawaii, 2006.
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Determine Rd from Trend graph only using SLS

Classical Decomposition



Power Decline as Difference Equation
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• Regression of it’s lagged self  auto-regression

• Because only 1 time lag is included  AR(1)

• AR(1) subset of larger class of AutoRegressive Integrated Moving Average (ARIMA)
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ARIMA + Decomposition

Commercial software:
(i) US Census Bureau
(ii) Bank of Spain
Complete solution

Statistical software:
User has to select model

ARIMA(100)(011) 

1213112 −−−− ⋅−=⋅+⋅−− tttttt PPPP εθεφφ
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Equation for ARIMA :

Autoregressive coefficient Seasonal Moving 
average coefficient

Analytical problems leading to longer observation times: Outliers, Data shifts, Missing Data  
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Data set from OTF
Deliberately introduce outliers
Calculate  Rd

(i) Linear Fit w/ SLS = traditional
(ii) Classical Decomposition
(iii) ARIMA + Decomposition

Traditional: 1 outlier  Rd changed significantly

Class. Decomposition: 1 outlier  Rd does not change significantly, 2 outliers  significant 
change

ARIMA+Decomposition: Least sensitive to outliers  even 3 outliers
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Method to correct Data Shifts
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Data shifts often occur due to hardware changes

Method:

• Multiply shifted section by a scaling factor

• Plot Residual sum of squares vs. scaling factor
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Method to correct Data Shifts

Example: Minimization of Error Sum of Squares of 
Errors (ESS)

Data shift correction procedure is successful for all 3 approaches.
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Data Shift – blind test

Data set with marked hump in the c-12-Month 
Moving Average
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Data Shift – blind test

Data set with marked hump in the c-12-Month 
Moving Average
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Data Shift – blind test

Data set with marked hump in the c-12-Month 
Moving Average

c-12-Month Moving Average after shift correction  no peak anymore

700

750

800

850

900

950

1000

1050

1100

0 20 40 60 80 100 120 140

D
C 

Po
w

er

Time (Months)

Original Data

c-12-month MA

corrected c-12-Month MA



National Renewable Energy Laboratory                                                                                         Innovation for Our Energy Future

700

750

800

850

900

950

1000

1050

1100

0 20 40 60 80 100 120 140

D
C 

Po
w

er

Time (Months)

Original Data

c-12-month MA

Data Shift – blind test

Data set with marked hump in the c-12-Month 
Moving Average

c-12-Month Moving Average after shift correction  no peak anymore

Cause: Ambient temperature sensor was reading 
erratically and was replaced.

Standard Least Square and ARIMA+Decomposition give 
the same result for degradation because almost 4 years 
of good data after shift.

If degradation had been after shift, uncorrected 
degradation rate would have been misleading.  
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Methodology Degradation 
Rate (%/year) Error

SLS original 1.47 0.12
ARIMA+Classical
Decomp. 1.44 0.06

 

    

    
 

 
 

 

 

SLS till 81 month (af ter 
hump) 0.86 0.24

SLS till 81 month (af ter 
hump) corr 1.41 0.22



1100

1120

1140

1160

1180

1200

1220

1240

0 20 40 60 80

D
C 

Po
w

er
 (W

)

Time (Months)

Data

Predicted Values

National Renewable Energy Laboratory                                                                                         Innovation for Our Energy Future

Procedure: 
1. Remove x number of data points from time series.
2. Substitute w/ average value
3. Fit ARIMA model and predict missing data points
4. Compare with actual data points

10% 
missing 
data

40% 
missing 
data

Actual data points: solid diamonds
Modeled points; open diamonds

ARIMA Modeling and Missing Data

Error does not increase significantly until >20% data missing (i.e. > 1 year of data missing)

0.0E+0

2.0E+3

4.0E+3

6.0E+3

8.0E+3

1.0E+4

1.2E+4

1.4E+4

0 20 40

Re
si

du
al

 S
um

 o
f S

qu
ar

es

Percent of Data Missing

1100

1120

1140

1160

1180

1200

1220

1240

0 20 40 60 80

D
C 

Po
w

er
 (W

)

Time (Months)

Data
Predicted Value



600

700

800

900

1000

1100

1200

1300

1400

0 20 40 60 80 100 120 140 160 180

D
C 

Po
w

er
 (W

)

Time (Months)

Original Data

National Renewable Energy Laboratory                                                                                         Innovation for Our Energy Future

Problematic Data Set

Degradation Rate determination difficult due to Data shifts, outliers & missing data 

Data stabilize at > 100 months! 
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Data Shift - all data
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Degradation Rate determination difficult due to Data shifts, outliers & missing data 

Methodology Degradation 
Rate (%/year) Error

SLS, all data 0.14 0.13

SLS, all data
Shif t-corrected 0.14 0.07

Class.Decomp. 
Shif t-corrected 0.13 0.07

ARIMA+Class.Decomp
Shif t-corrected 0.15 0.04

All 3 methodologies determine ultimate degradation rate after data are corrected.

Correction procedure enables to determine degradation rate with small enough uncertainty

Data stabilize at > 100 months! 
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Degradation Rate in shorter Time
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multi-Si a-Si

• Degradation rates were calculated for each method  starting with the first 2, 3 years etc.

• The a-Si module was in the field for over 6 months before data collection commenced.

• For longer times all three methodologies converge to the same rate.

• Traditional & Cl.Decomp. show increasing bias for shorter time but w/in uncertainty.

• ARIMA  approach shows lowest bias close to ultimate degradation rate.
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PVUSA – Weekly Intervals
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Conclusion

• Analysis of >40 modules showed why 3-5 years traditionally required to 
determine Rd

• Introduced 2 new methods to determine Rd (Class.Decomp., ARIMA+Decomp.)

• ARIMA most robust against outliers

• Introduced method to correct data shifts

• ARIMA seems to able to determine Rd more quickly  limited by numbers of 
degree of freedom  need more data points  sample weekly

• Using shorter time intervals increases noise but holds promise
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“All Models are wrong………but some are useful!”

-- G.P.P. Box
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