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Helps Protect Cell Materials From Environmental Stress
– Must Provide Good Adhesion.
– Resistant to Heat, Humidity, UV Radiation, and Thermal Cycling.

Electrical Isolation
Control, reduce, or eliminate moisture ingress.
Optically Couples Glass to Cells

– High Photon Transmission.

Cost Must Be Balanced With Performance.

Purposes of Polymer Materials in PV
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Encapsulant Chemistry
Optical Transmission
Electrical insulation
Moisture ingress

Outline
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Encapsulant Materials Structures
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Early PV Modules Used PDMS

Dow Corning Corporation, “Develop silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays”, Doe/JPL954995-2 (1978).
M. A. Green, “Silicon Photovoltaic Modules:  A Brief History of the First 50 Years”, Prog. Photovolt:  Res. Appl. 13, (2005) 447-455.
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EVA Film Composition
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F. J. Pern, “Composition and Method for Encapsulating Photovoltaic Devices”,  Patent# 6,093,757, (2000).
P. Klemchuk, M. Ezrin, G. Lavigne, W. Holley, J. Galica, S. Agro, ”Investigation of the Degradation and Stabilization of EVA-Based Encapsulant in Field-Aged Solar Energy 
Modules”, Polymer Degradation and Stability, 55 (1997) 347-365.
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The PDMS Samples Did Not Degrade

Exposure of encapsulant materials to 42 UV suns at 80⁰C to 95⁰C.  
Samples between 3.18mm low Fe non-Ce glass.

M. D. Kempe, T. Moricone, M. Kilkenny, “Effects of Cerium Removal from Glass on Photovoltaic Module Performance and Stability”, SPIE, San Diego, Ca, August 2-7, 2009.
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EVA Has Good Optical Transmittance

Solar photon-weighted average optical density determined from transmittance measurements through polymer 
samples of various thickness (1.5 to 5.5 mm) between two pieces of 3.18 mm thick Ce doped low Fe glass. 

M. D. Kempe, “Ultraviolet Light Test and Evaluation Methods for Encapsulants of Photovoltaic Modules”, Solar Energy Materials and Solar Cells, 94 (2010) 246-253.

Transmission to Cells through 3.18 mm 
glass and 0.45 mm Encapsulant

%

Momentive RTV615 94.5 ± 0.3 PDMS, Addition Cure

Dow Corning Sylgard 184 94.4 ± 0.3 PDMS, Addition Cure

Dow Corning 527 94.4 ± 0.3 PDMS, Addition Cure

Polyvinyl Butyral 93.9 ± 0.4

EVA 93.9 ± 0.4

NREL Experimental 93.4 ± 0.4 Poly-α-olefin

Thermoplastic Polyurethane 93.3 ± 0.3

Thermoplastic Ionomer #1 92.3 ± 0.4 Copolymer of Ethylene and Methacrylic acid

Dow Corning 700 91.7 ± 0.3 PDMS,  Acetic Acid Condensation Cure

Thermoplastic Ionomer #2 88.4 ± 0.4 Copolymer of Ethylene and Methacrylic acid

Encapsulant Comments
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Polymer Resistivity

Dry

Wet

Electrical Conductivty Varies Greatly

Resistivity measured at 22°C using alternating polarity DC current a +/- 700V.
“Wet” samples were soaked in water at 40°C.
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PVB, 1000 Times more Conductive than 
EVA

G. R. Mon, R. G. Ross, “Electrochemical degradation of amorphous-silicon photovoltaic modules”, 18th PVSC, Las Vegas, NV, October 21-25, (1985) p. 1142-1149.
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Leakage Current Correlates With 
Performance loss

G. R. Mon, R. G. Ross, “Electrochemical degradation of amorphous-silicon photovoltaic modules”, 18th PVSC, Las Vegas, NV, October 21-25, (1985) p. 1142-1149.
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Backsheets Protect Against Electrical Shock

Poly Vinyl Floride (PVF)
n

F

O

PolyEthylene Terepthalate (PET)
n

O O

O

Glass
EVA
PVF
PET
PVF

Cells

Framed Silicon Wafer Module

Al Frame

PET 
provides Electrical insulation.

PVF 
provides UV stability
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Time Constant for Water Ingress
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lEVA =18 mil,  T=27 oC,   CSat,EVA=0.0022 g/cm3

PVF ETFE PVF/PET PET PCTFE
τ1/2 =  0.0741 0.223 0.457 1.78 6.87  (day) 

For τ1/2=20 years need 10-4 g/m2/day

M. D. Kempe, "Modeling of rates of moisture ingress into photovoltaic modules," Solar Energy Materials and Solar Cells, vol. 90, pp. 2720-2738, 2006.
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Even a Glass/Glass Module Will Let in 
Moisture

Finite element analysis using meteorological data from Miami Florida 2001

M. D. Kempe, "Modeling of rates of moisture ingress into photovoltaic modules," Solar Energy Materials and Solar Cells, vol. 90, pp. 2720-2738, 2006.
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Edge Seals Can Keep Moisture Out
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Glass

Glass
H2O

w

Schematic of module edge

Schematic of Test sample
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Packaging materials are formulated to:
– Resist to Heat, Humidity, UV Radiation, and Thermal Cycling. 
– Provide Good Adhesion.
– Optically Couples Glass to Cells
– Electrically isolate components
– Control, reduce, or eliminate moisture ingress.

Choices made by Balancing cost With Performance.

Conclusions
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