

Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrated Photovoltaics

David C. Miller*, Cheryl E. Kennedy, and Sarah R. Kurtz

*speaker

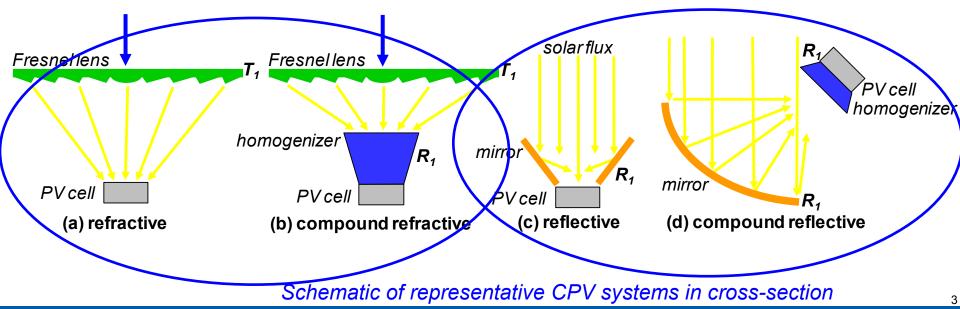
PV Reliability Workshop

Denver West Marriot

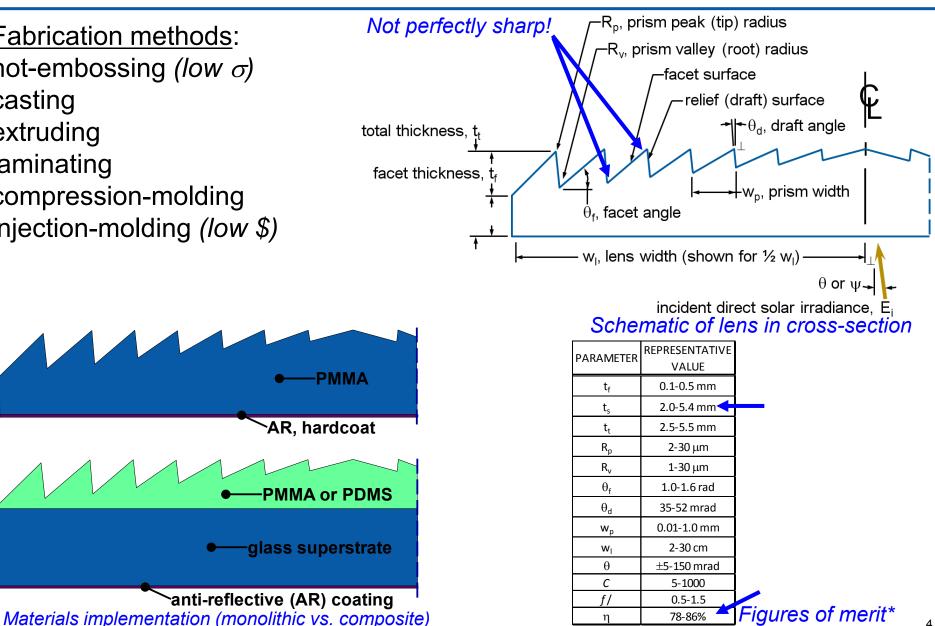
2010/02/19 1:20 PM

This presentation does not contain any proprietary or confidential information. NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

Overview

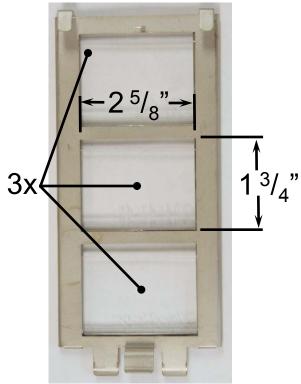

- Introduction/scope/terminology
- •Experiment (@ NREL) vs. literature
- •Failure modes
 - Optical durability
 - Mechanical durability
 - Soiling
- •Failure mechanisms
 - Photodegradation
 - Thermal decomposition

Scope


Focus: Fresnel lens component in refractive CPV system
Opto-mechanical component expected to last 30 years

•Direct solar resource (*for reference*) solar disc: ±4.65 mrad (±0.27°) circumsolar region: ±50 mrad (±2.9°) reference spectrum: ASTM G173 direct

Terminology


Fabrication methods: hot-embossing (low σ) casting extruding laminating compression-molding injection-molding (low \$)

NREL Screen Test (1)

•Literature \Rightarrow initiated \ge 20 years ago

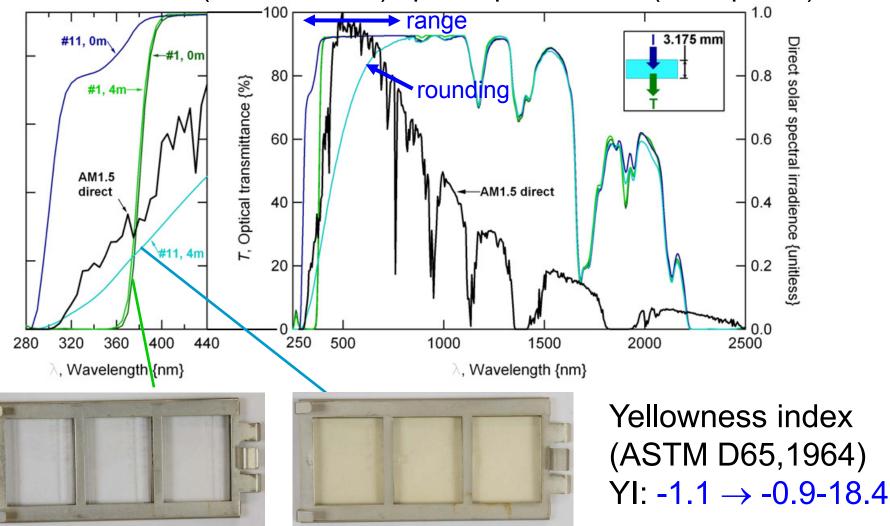
•Characterize the durability of a broad range of contemporary specimens subject to indoor HALT

DESCRIPTION	SPECIMEN TYPES					
stock sheet	11					
linear lens	1					
spot lens	8					
veteran lens	3					

Test specimens, (3) ea

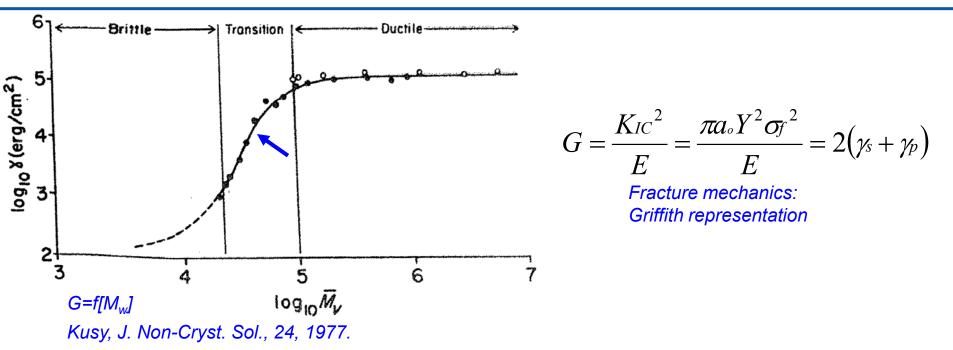
•Test instrument: ATLAS Ci4000 Weather-ometer (Xenon-arc lamp @ 2.5x UV suns. Chamber @ 60°C/60%RH)

NREL Screen Test (2)


•Measurands: Periodic optical appearance → optical transmittance (hemispherical) mass contact angle (sessile drop, 1st surface) "End of life" prism facet geometry (lenses: section then SEM) surface morphology (SEM or AFM) indentation (Vicker's hardness, toughness) rheometry (E', E'', T_{a}) XPS or ESCA (surface chemistry) •Test schedule:

> 0, 1, 2, 4, 6, 12, 18, 24, 30, 36, 42 months ≥8 acceleration factor

Optical Durability

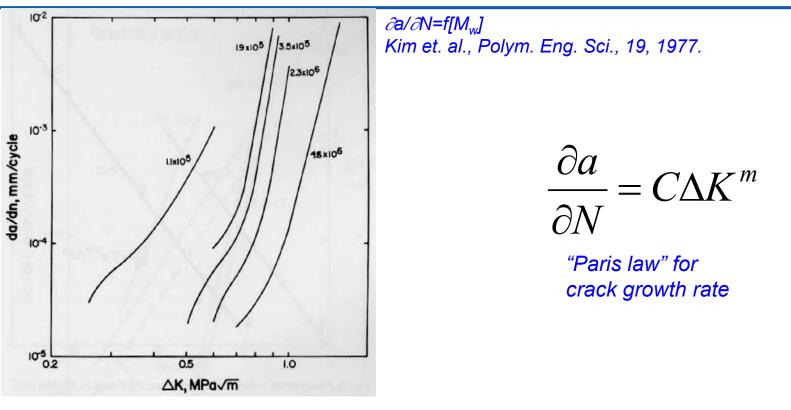

•Transmittance of PMMA

•Lambda 900 (Perkin-Elmer) spectrophotometer (w/ I-sphere)

Comparison of transmittance at 0, 4 months for best and worst sheet stock specimens

Mechanical Durability (Fracture/Toughness)

•Unstable crack propagation (σ_f) depends on toughness (K_{IC}), greatest critical flaw (a_o) •Embrittlement: K_{IC} varies with M_w , which decreases over time in the field •Critical molecular weight, M_w , 10,000-100,000 (<10⁴ not machinable)

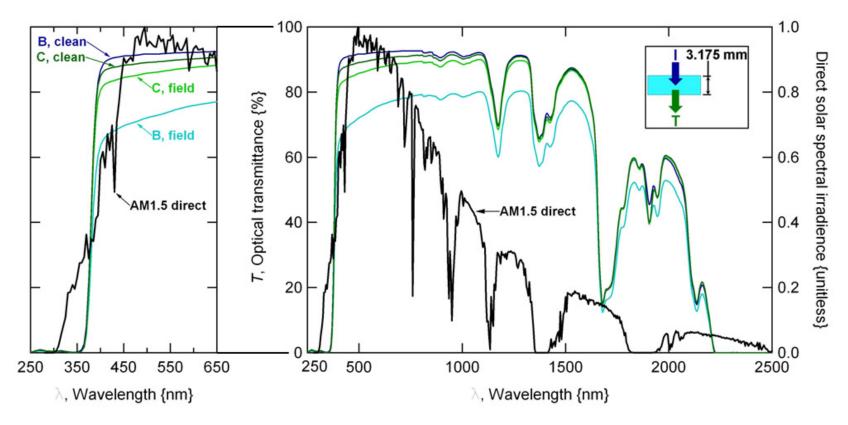

•Mirror/mist/hackle fracture morphology for $M_w > 10^5$

•Related mechanical concerns:

•Buckling \Rightarrow fracture

•Abrasion (tribology = f[H,E]); $H=f[\sigma_y]$; $\sigma_y=f[M_w]$

Mechanical Durability (Fatigue)

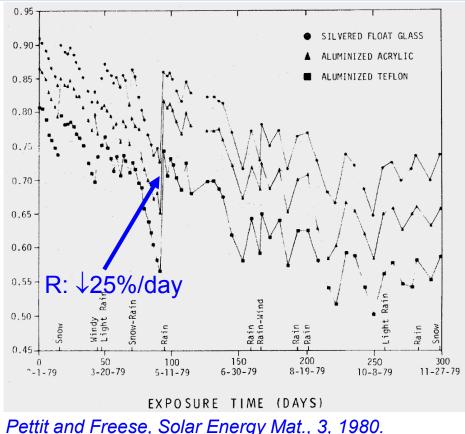

Steady-state crack propagation modeled by log-linear relationship

- •Hystertic heating above ~5 Hz
- •Like unstable fracture, M_w & H₂O absorption can be influential

Soiling

- Contamination absorbs, scatters, and back-reflects light
- •Effect most significant as $\lambda \downarrow$ (Mie scattering: 0.6/n< $\pi \varnothing / \lambda < 5$)
- •Direct/specular light more severely affected than hemispherical

Contact angle (sessile drop) $\theta: 66 \rightarrow 58 \rightarrow 43^{\circ}$


Comparison of transmittance as-received and after cleaning for 19, 8 year old Fresnel lens specimens

Soiling (Literature Summary)

Issue of soiling is significant (could compromise η_{module})!
 Data from: Baja Mexico (*ocean & desert*), Europe (Spain & Italy), North & South *Africa*, *Australia*, West China might add perspective

YEAR	REFERENCE	LOCATION	ENVIRONMENT	SPECIMEN(S) (FIRST SURFACE)	SPECIMEN TYPE		DURATION	↓T, typical {%}	↓T, max {%}	RECOMMENDED f CLEANING
1971	Hamberg []		laboratory	glass	mirror		N/A	3	42	
1971	Garg []	Roorkie, India	urban, continental	glass, PMMA			30 days	14	63	
1974	Pettit [], 1978 []	Albuquerque, NM, USA	rural, desert	glass, PivliviA glass, PivliviA, Al	mirror		5 weeks	14 5	23	
1977	Berg []	Albuquerque, NM, USA	desert	glass	mirror		1 month	4	13	
1978	Blackmon [], []	CA, USA; NM, USA	desert	glass, PMMA	mirror		1.5 years	7	13	
1978	Freese []	Albuquerque, NM 100	desert	glass	mirror		7 months	5	1	
1979	Freese []	Albuquerque		51833	1111101		711011013	4	1	
1979	Nimmo []	Dhahran, Si							/A	
1979	Sheratte []	CA, USA; GA, I							10	
1980, 1983	Cuddihy [], []	CA. U		•••					19	
1980	Hoffman []	CA, NM, NY, I				VI ,	шал	9 8	21	
1980	Pettit []	Albuquerqu	A, NM, NY, I Albuquerqu typical (0()			7.5	12			
1980	Roth [], []	Albuquerqu	{%}		↓T, max {%}		10	18		
1981	Bethea []	Crosbytor					8	9.4		
1981	Morris []	A, HI, NM, NV,					15	100		
1983	Bethea []	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>						44.5		
1984	Cuddihy []	$\frac{AK, WA, US}{Riyadh, Sa} \downarrow T, AVG \{\%\}$		9		34		6	19	
1984	Khoshaim []							22	33	
1985	El-Shobokshy	Riyadh, Sa		[/0]		51		3	55	
1985	Sayingh []							15	80	3 days
1986	Deffenbaugh []		, ST DEV {%}	7		26				
1987	Al-Busari []	Safat, I	, 31 82 (70)					9	57	2/ month
1990	Nahar []			0-			~~	4	62	daily
1990	Said []	Dhahran, S	T, MAX {%}	35		100		7	65	1 month
1992	Hasan []		.,	00			00	16	35	
1992	Pande []	Jodphur, India	arid	glass	PV mo	odule	1 year	8	30	
1993	El-Shobokshy		laboratory	glass	PV module		N/A		90	
1995	Bonvin []	Morges, Switzerland	urban	glass	she	eet	1 year	5	25	
1997	Becker []	Köln, Germany	urban	glass	PV module		5 years	4	24	
1997	Hammond [], []	Phoenix, AZ, USA	urban, desert	glass	PV module		3 years	1	3	
1998	Al-Hasan []		laboratory	glass	sheet		N/A		73	
1998	Haeberlin []	Burgdorf, Switzerland	urban	glass	PV module		3 years		10	
1999	Goosens []		laboratory	glass	PV module		N/A		90	
2001	Hegazy []	Minia, Egypt	rural, desert	glass	sheet		1 month	15	26	
2003	El-Nashar []	Abu Dhabi, UAE	urban, desert	glass	desalination plant		1 year		29	
2005	Sahm []	Las Vegas, NV, USA	urban, desert	PMMA	sheet		1 year	11	24	2-4 weeks
2006	Kimber []	CA, USA	urban, desert	glass	PV site		1 year	6	27	
2008	Ruesch [], []	Davos, CH; Raperswil, CH	urban + rural, temperate	glass, PMMA, others	sheet		20 years	4.5	14	
2008	Vivar []	Madrid, Spain	rural, continental	glass, PMMA	CPV module		4 months	12	26	
2009	Banchik []	Las Vegas, NV, USA	urban, desert	PMMA	sheet		1 month	10	12	

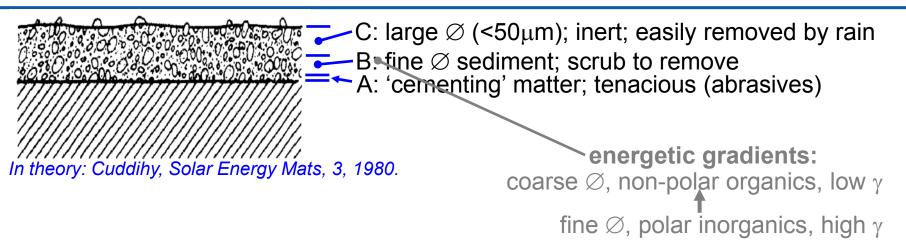
Soiling (Over Time)

•Asymptotic degradation w/ time $\left(\frac{1-T}{T_{clean}}\right) = d_1 erf \left[d_2 \omega^{d_3}\right]$

(Hegazy, Renewable Energy, 22, 2001)

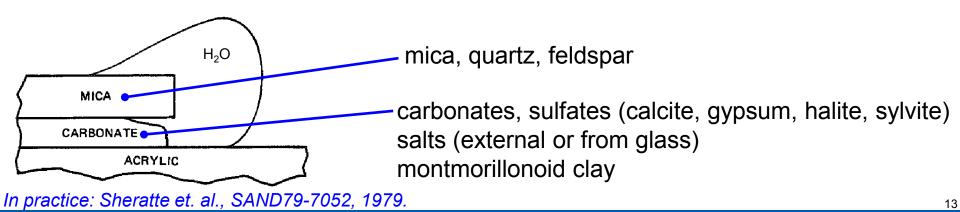
T cannot be 100% restored to *T*_i
Greater permanent retention for PMMA vs. glass

Subject to synoptic events:

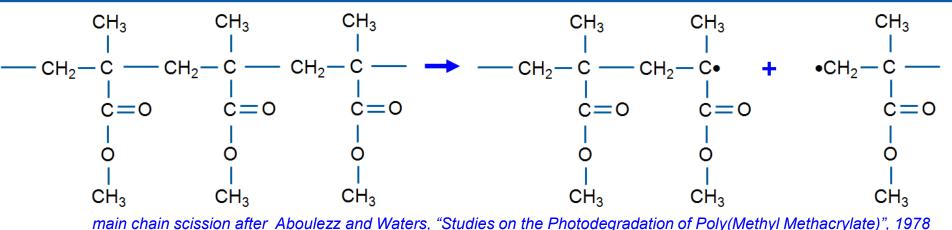

- •Rain: intense vs. evanescent
- Scraping effect from snow

Subject to tilt angle:

- •Horizontal inclination \Rightarrow most soiling; vertical \Rightarrow least soiling
- •Relates to accumulation and natural cleaning processes
- Trackers: store them face down overnight
- •Uniformity... accumulation at the bottom \Rightarrow partial shading


NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

Soiling (Mechanisms)

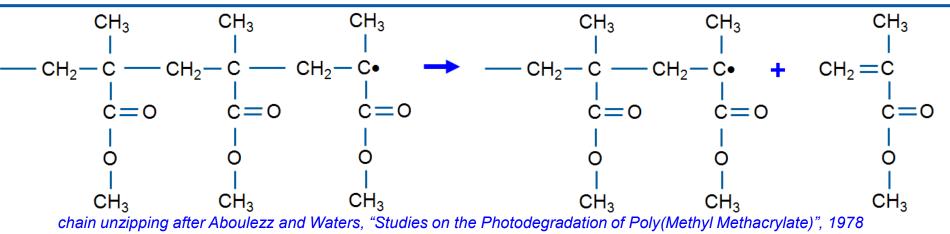


CPV environment:

- Great insolation, little precipitation \Rightarrow more prone to soiling
- •Alkaline (desert) vs. acidic (temperate) soils

Photodegradation

main chain scission alter Aboulezz and Waters, Studies on the Photodegradation of Poly(Methyl Methacrylate), 1976


•Random main chain scission by UV (photolysis) $\Rightarrow M_w$ therefore T_g reduced • T_q reduced $\downarrow \sim 5^{\circ}$ C after 18 years outdoors

L.G. Rainhart & W. P Schimmel, SAND 74-0241, 1974.

•Likewise affects mechanical durability: $K_{IC} \downarrow \Rightarrow \sigma_f \downarrow \dots \partial a / \partial N \uparrow$

Many classic studies of quantum yield vs. λ, atmopshere
Volatile products (vacuum): methyl formate, methanol, methyl methacrylate, plus(in air): methane, hydrogen, carbon monoxide, carbon dioxide
Potential chromophores: residual monomer, formulation additives, co-polymers

Thermal Decomposition

- •Unzipping of main chain in methyl methacrylate (monomer)
- •Autocatalytic process (zip length on order of 1000)
- •Significant weight loss (vs. minimal in chain scission)

•Occurs readily for T>200°C

Synergistic effect w/ irradiation (UV)⇒occurs at T<200°C
 Many classic studies of E_a vs. heating rate, atmosshere
 O₂ suppresses decomposition

Unknowns

•Mechanical (fracture & fatigue):

General material characteristics understood; application specific data is not available Size/morphology of field-developed critical flaws

Dimension stability, e.g. facets

•Soiling (lots!):

Comparison between key world sites Solution methods (fluorination, roughening, or doping the first surface) Tracking vs. fixed modules

•SOG:

No literature (concerning durability) Significant $\Delta \alpha \Rightarrow$ delamination?

Summary

NREL study:

•Identify key issues for contemporary specimens

Optical durability: •Evolution of location & distinctness of cut-on frequency

Mechanical durability (K_{IC} , $\partial a/\partial N$): •Fracture, fatigue strongly depend on M_w •Embrittlement over time

Soiling:

•Complex issue that may vary significantly over time w/ location

Photodegradation: •Chain scission \Rightarrow decreased M_w

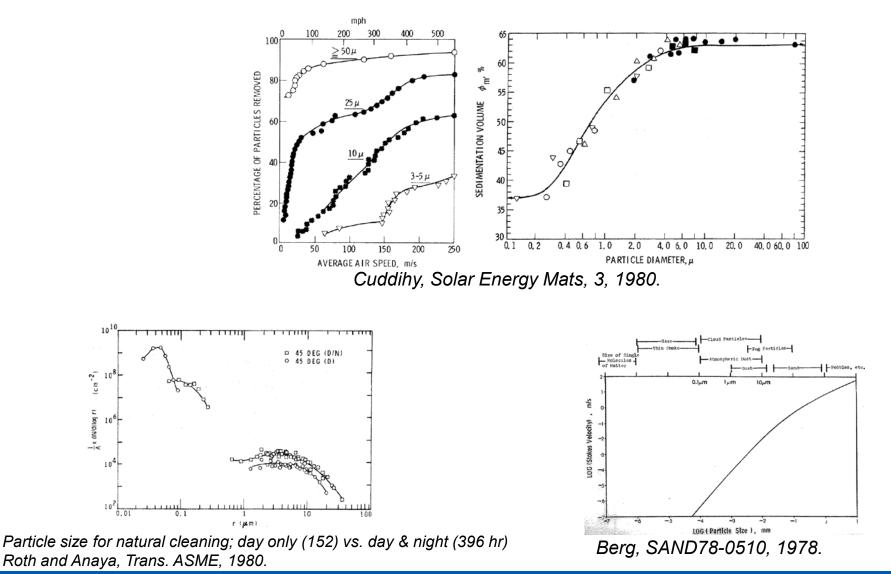
<u>Thermal decomposition:</u> •Chain unzipping \Rightarrow decreased mass

<u>SOG:</u>
 Probably physically robust against soiling; limited existing literature

17

Acknowledgements

•NREL: Daryl Myers, Marc Oddo, Robert Tirawat, Bryan Price, Matt Beach, Christa Loux, Kent Terwilliger


•Others: Ralf Leutz (Concentrator Optics Inc.), John Wiedner, Michael Longyear, Scott Steele (Arizona Public Service, S.T.A.R. facility)

This work was supported by the U.S. Department of Energy under Contract No. DOE-AC36-08GO28308 with the National Renewable Energy Laboratory.

Xtras

•Some useful additional figures...

20