
Cohesion and Phase Separation in Organic PV Heterojunction Layers

Objectives for OPV Reliability Thrust
• The objective of our research is to establish a well-defined relationship between the durability of the solar cell and the 

environmental factors effecting it

• Develop quantitative methods to characterize basic thermomechanical properties (e.g. adhesion, cohesion)

oEffect of composition of the heterojunction layer

oEffect of heterojunction layer thickness

oEffect of annealing 

• Are degradation processes coupled and how?

• Leverage from more mature area of reliability physics in microelectronics 

o mechanisms, kinetic models, accelerated testing and life prediction
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Quantitative Adhesion/Cohesion and Debond Kinetics

The DTS delaminator is used to measure fracture energy using the 4-point bending 

(FPB) technique by applying  a crack driving “force” that is higher than the cracking 

“resistance” of the weakest layer in the thin film stack that makes up the solar cell
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FPB adhesion

Adhesion/Cohesion Sample Preparation and testing

Characterization of Cohesive Surfaces

• XPS reveals similar debond path 

for DCB and 4-pt bend samples

• C ~ 93%, S ~ 7%

• Suggests cohesive failure in 

PCBM:P3HT layer

• Composition of the  

heterojunction layer:

Limited bonding to fullerene 

– expect low cohesion

Our measurements indicate 

higher ratios of P3HT to PCBM 

make tougher active layer

• Heterojunction layer thickness :

does not have a strong effect 

on cohesion

• Annealing:

Morphology of the 

P3HT:PCBM film changes with 

annealing, causing increased 

cohesion

Factors Effecting Cohesion of P3HT/PCBM Layers
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XPS of fracture interface of a solar cell tested in 4-pt bending
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Adhesion specimens are fabricated by a) bonding a glass substrate to 

the solar cell with epoxy  to produce a b) “solar cell sandwich” which is 

diced into beams that c) form the four point bend (FPB) specimens used 

to measure the fracture energy Gc by d) delaminating the solar cell 

inside the weakest layer.
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Preliminary measurements showing the  

range in cohesive fracture energy values for 

P3HT:PCBM organic photovoltaics

The  P3HT:PCBM OPVs generally delaminate at two different locations in the BHJ layer. These locations, as shown above, have 

a characteristic cohesive fracture energy associated with them, where the top of the BHJ film  is generally weaker than the 

bottom. The presence  of ripples on the cohesive surface revealed by the AFM scan provides evidence of compressive stresses.
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5 micron AFM scans reveal the effects of 

annealing. The rougher morphology corresponds 

to higher cohesion fracture energy. 

Note:  All devices were cured at 90°C for 1h prior 

to subsequent anneals

5 µm

scans
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P3HT/PCBM Thickness, h (nm)
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