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Figure 1: (Left) Rendering of a ‘Banyanized’ solar panel Line-focusFigure 1: (Left) Rendering of a Banyanized  solar panel.  Line-focus 
optics within the panel will reduce area costs and allow production tooptics within the panel will reduce area costs and allow production to 
scale with fewer constraints (Right) Existing tracking systems can bescale with fewer constraints.  (Right) Existing tracking systems can be 
used No downstream modification to solar infrastructure is neededused.  No downstream modification to solar infrastructure is needed.
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single-unit module prototype demonstrates module integration andsingle-unit module prototype demonstrates module integration and 
direct cell mate (Right)direct cell mate (Right).

Fi 4 P di t d O ti l Effi i f t t ti (84 2%) hFigure 4: Predicted Optical Efficiency of prototype optic (84.2%) shownFigure 4: Predicted Optical Efficiency of prototype optic (84.2%) shown 
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