The Reliability and Durability of Novel Silicone Materials for Photovoltaic **Encapsulation**

Yi Kang, Barry Ketola, Keith McIntosh, Don Juen, Ann Norris, Mary Kay Tomalia, Christopher Shirk, **Dow Corning Corporation, Midland, Michigan USA**

 Module encapsulated by Silicone rubber as superstrate, fiberglass as substrate with potted junction box.

- Modules operated over 27+ years in the hot desert condition.
- ~70% of modules still functional operating, average power drop about 30% from its power rating.
 - No notable delamination of the superstrate and busbar corrosion observed even after additional stress tests applied.

250 to 900 nm

1.38 to 1.58

1000 to 1600 nm

−2 ... −5×10⁻⁴ °C

• Module from solar array at BP Solar in Frederick, Maryland.

- These modules were encapsulated with silicone only without backsheet.
- Modules still delivery > 90% of nameplate rating after 15 years operating and 10 years storage.
- No evidences show corrosion and yellowing.

 SunPower Module with PV-6100 Series encapsulant made by 2009 • Fully-automated dispensing & cell-placement

Silicone properties make them ideal candidates as encapsulants for photovoltaic modules

General Silicone Composition and Optical Properties

- Excellent UV-visible transmittance
- Good near-IR transmittance
- Tunable refractive index
- Range of *dn/dT*
- Low modulus/Low T_{a}
- Variety of cure chemistries available
- Addition cure, Pt catalyzed
- Condensation cure
- Excellent environmental stability, no change in properties: •High temperature stability (150 °C continuous) • Low moisture pick-up (<0.05%)
- Oxygen O_2 Corrosion Triangle M+X-Water lons Vacuoles, potential corrosion sites

Silicones can be formulated to be low modulus over a very wide temperature range due to the very low T_{a} . Whereas EVA and other organic polymers have higher

modulus at low temperatures. Low modulus promotes stress relief in encapsulation applications.

Dielectric Properties-Silicones are known for
having good electrical insulating properties

Material	Dielectric strength, V/mil	Thickness, mils (mm)	Break through voltage, kV
PV-6100 Series	720	21 (0.53)	15.1
EVA	907	17 (0.43)	15.4

Partial Discharge Test For Silicone Encapsulation			
Sample	Corrected Extinction Voltage	Results	
Tedler (25 micro) /Polyester(15mil)/Silicone #1	1220	> EU Rated	
Tedler (25 micro) /Polyester(15mil)/Silicone #2	1058	> EU Rated	
PET Backsheet (50 micro)/Polyester(15mil)/Silicone #1	1098	> EU Rated	
PET Backsheet (50 micro)/Polyester(15mil)/Silicone #2	1165	> EU Rated	
Silicone #3/Polyester (15mil)	1019	> EU Rated	
Silicone #3 (30mil)	No Break Down	> EU Rated	
Silicone #2 (30mil)	No Break Down	> EU Rated	

Silicones can be formulated to show only cohesive failure after 1000 hours of 85/85 exposure, no drop in peel force

Silicones encapsulant has better reliability and durability over EVA

Alpha Response to 30X roof top concentrator @ ANU

50%

10%

Ν

EVA charred after

86 days on 30X tracker

Comparison of alpha before and after damp heat aging **10**¹ 201, post-DH + dry out alpha (cm⁻¹) EVA, post-DH + dry out 10 EVA, pre-DH **10**⁻ 201, pre-DH 10⁻² 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 200 Wavelength (nm)

Silicone A Silicone B Silicone C EVA Silicone A Silicone B Silicone C EVA

The information provided in this presentation does not constitute a contractual commitment by Dow Corning. While Dow Corning does its best to assure that information contained in this presentation is accurate and fully up-to-date, Dow Corning does not guarantee or warranty the accuracy or completeness of information provided in this presentation. Dow Corning reserves the right to make improvements, corrections and/or changes to this presentation in the future.

DOW CORNING

41 hr DH

740 hr DH

833 hr UV

Solar Solutions nleasn the S 0

www.dowcorning.com/solar