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Staebler-Wronski effect and mitigation
Flexible light-weight triple-junction 

laminates for roofing applications
Outdoor behavior and energy yield
Annual degradation
Reliability
How do we predict performance?
Real life performance
Summary

Outline
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Staebler-Wronski Effect  (1977)
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Effect of Thermal Annealing
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Thick a-Si layer causes more degradation
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 Improve materials using hydrogen dilution
during film growth

 Incorporate light trapping in cell design
 Adopt multi-junction cell structures

 Rate products at their stabilized power

Approaches for Improving a-Si cells 
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Hydrogen dilution
Jsc

(mA/cm2)
Voc
(V) FF Eff.

(%)

Near-optimum 10.04 1.018 0.732 7.48

Optimum 9.88 1.028 0.761 7.73

On-the-edge 9.82 0.624 0.426 2.61

Over-the-edge 8.95 0.459 0.562 2.31

Effect of hydrogen dilution on a-Si cells
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Effect of Hydrogen Dilution 
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Description State
Jsc

(mA/cm2)
Voc
(V) FF Eff.

(%)

a-Si, low dilution, 300 °C Initial
Degraded

12.3
11.6

0.94
0.91

0.65
0.55

7.5
5.8

a-Si, high dilution, 300 °C Initial
Degraded

11.6
11.2

0.96
0.94

0.68
0.61

7.6
6.4

a-Si, low dilution, 175 °C Initial
Degraded

11.4
9.5

0.96
0.91

0.64
0.46

7.0
4.0

a-Si, high dilution, 175 °C Initial
Degraded

10.9
10.5

1.00
0.97

0.69
0.60

7.5
6.1

a-SiGe, low dilution Initial
Degraded

17.6
14.9

0.72
0.64

0.55
0.41

7.1
3.9

a-SiGe, high dilution Initial
Degraded

18.0
16.3

0.74
0.69

0.59
0.45

8.0
5.1
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Light Trapping
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Light Trapping Effect
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Multi-junction cells using a-Si:H & a-SiGe:H
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Ge profiling in a-SiGe:H cells
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UNI-SOLAR Laminates are Unique

Conventional Solar Cells UNI-SOLAR® Laminates
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Historical indoor light-soak data 
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Light-Soak Stabilization Data for Uni-Solar a-Si Triple-Junction
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Fitted data

Product shipped at 
15% above stable value
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A  DIFFERENTIATED PRODUCT
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A  DIFFERENTIATED PRODUCT
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A  DIFFERENTIATED PRODUCT
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A  DIFFERENTIATED PRODUCT
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A  DIFFERENTIATED PRODUCT
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A  DIFFERENTIATED PRODUCT
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Uni-Solar
PRODUCT FEATURES



February 19, 2010 23

Higher Energy Yield (kWh/kW)
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Higher Energy Yield (kWh/kW)
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Higher Energy Yield (kWh/kW)
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Higher Energy Yield (kWh/kW)
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Long Term Behavior (single vs. triple junction)
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Annealing effect improves summer performance
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Long Term Degradation, Golden, CO (1997 – 2006)



February 19, 2010 30

Long Term Degradation Studies

• UNI-SOLAR products have been extensively tested for long durations at third party sites

• The degradation rates are: 0.42% per year average; 0.49% per year weighted average



February 19, 2010 31

What causes the 0.3% -- 1% annual degradation?

EVA yellowing? 

Dirt?

Contacts?

Long-term Degradation
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What causes the field failure?
Accelerated tests, such as IEC 61646, has improved
reliability significantly

Manufacturing defects
Contacts
Shunts
Poor encapsulation
Improper installations
Manufacturers and installers need to be more

vigilant

Reliability
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Predict System Performance

•SAM

•PVSYST

•None considers the annealing effect

•Real life temperature dependence is flat rather 
than -0.2%/ OC

33
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Chevron Solarmine, California

34
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Real Life Data

35
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Models

36
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Summary

Staebler-Wronski effect is reversible upon thermal 
annealing

The triple-junction structure with high quality material 
results in improved module performance featuring 
higher kWh/kW 

Reliability has been much improved; 25 year warranty 
is being offered

Long-term degradation still exists and needs better 
understanding

Performance prediction should include thermal 
annealing to reflect real-life conditions

37
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