

Safety Concerns with New PV Polymeric Materials

Tim Zgonena Underwriters Laboratories Inc (UL)

February 19, 2010

Copyright© 1995-2007 Underwriters Laboratories Inc. All rights reserved. No portion of this material may be reprinted in any form without the express written permission of Underwriters Laboratories Inc. or as otherwise provided in writing.

Connector Materials

This passed qualification test. This is after 8 years operation in AZ

This could happen to any PV connection or connector that is unmated under load. 150Vdc and 6A.

Strain from cable, birds and ice weight compounded by sway and leverage of the cable strain relief gland.

I just need a little more cable .

2111

Delamination or creep can can cause these ribbons to open or short circuit

Terrible Tabbing Tether!!!

J-Box Arcing Problems

The Changing PV Landscape

- Most PV modules produced between 1990 and 2005 share similar construction, materials and manufacturing processes.
- This traditional PV module recipe was developed over years of research and testing and it has a good track record.

Past Performance is Not Necessarily Indicative of Future Results

- New players, mfrs with little or no PV experience.
- New PV module configurations and applications
- Significantly new construction techniques
- Many new construction materials
 - Thermoplastic and other new encapsulants and adhesives with low softening / melt temps
 - Conductive adhesives to replace solder
 - Polymer mounting
- New manufacturing processes

Recent Thermoplastic Concerns

- J-box adhesion, delamination, creep or flow. Any movement can be very very bad!
- Electrical connections short or open circuits
 - Displacement of electrical conductors or components
 - Loss of contact pressure
- Mounting means delamination, creep or flow
 - Loss of mechanical integrity
 - Falling modules or falling glass

PV Polymeric Material Creep

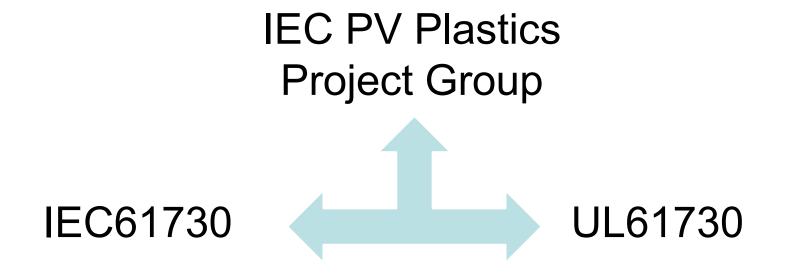
We are seeing a transition away from crosslinked EVA based PV encapsulants toward thermoplastic encapsulants materials in the construction of PV modules.

- These thermoplastic materials can flow or creep over time when exposed to the high operating temperatures.
- Some of these new materials have melt temperatures less than 100C.
- Existing temperature tests are normalized to 40C and chamber cycling is done at 90C max and will not always address worst case modules temperatures experienced from high ambients, high irradiance and shading conditions that can raise temperatures well above 90C.

This flow or creep of critical PV polymeric materials can result in a risk of shock, fire or mechanical hazards.

Challenge!

- Existing evaluation programs do not address all concerns as demonstrated by increased product testing failures
 - New generation of PV modules,
 - New components and
 - New materials



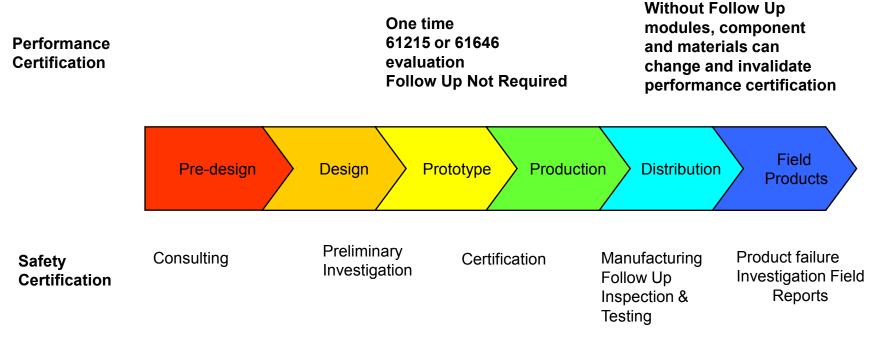
IEC 61730 Scope and Object

IEC 61730 describes the fundamental construction requirements for photovoltaic (PV) modules in order to provide safe electrical and mechanical operation during their expected lifetime. Specific topics are provided to assess the prevention of electrical shock, fire hazards, and personal injury due to mechanical and environmental stresses.

International Information Transfer

IEC PV Material Characterization Project Team (TC82, WG2)

- Scope Developing PV material property characterization requirements
 - Start with Backsheets, then Encapsulants and Front Sheets
 - 21 companies participating
 - Arkema
 - Atlas
 - BP Solar
 - Dow Chemical
 - Dow Corning
 - DuPont
 - eTimax-Solar


- First Solar
- Fraunhofer
- Isovolta
- JEMA
- JET
- Krempel
- Madico

- NREL
- Sharp
- Solarwatt
- TUV Germany
- Tyco Electronics
- VDE
- UL

Hazard	Failure Mechanism	Test	Test Method
	Electric strength – dielectric breakdown due to	Dielectric Strength	IEC 60243,
	degradation of insulating material	_	IEC 60216-5
			(thermal aging)
	Voltage tracking – voltage causing a permanent	СТІ	IEC 60112
	electrically conductive carbon path after		
Electric Shock	application of wet contaminants.		
	Material electrically conductive	Volume Resistivity	IEC 60167
	Insulation thickness consistency	Partial discharge	IEC 61730-2
	Mechanical protection from tearing	Tensile Strength,	ISO 527-3,
		Tear Resistance,	ASTM D1004,
		Cut Test	IEC 61730-2
	Mechanical protection from punctures due to installation tools	Puncture Properties	ASTM D7192
	Mechanical support of junction box due to	Tensile Creep	ISO 899
	movement or stretching of backsheet		
	Superstrate / Glass movement/creep	Creep/flow test,	D6382
	Substrate / Encapsulant movement from J-box	Dynamic Mechanical	
	and cable weight	Analysis (DMA)	
	Interfacial Delamination/adhesion	Bond strength,	??
	Common failures include crazing (micro scale)	Peel strength, Intra-	SAE Automotive or
	that grow to cracking and mechanical failures.	layer adhesion	IEC 60950-1
	SEM or TEM optical microscope to view	_	(2.10.11)
	Water ingress from delamination	Water Absorption	ISO 62
Flammability	Additional fuel for the fire	Flammability test,	IEC 60695-11-10,
		Radiant Heat	ISO 5657
		Ignitability (Cone	
		Calorimeter test)	
	Insulated or uninsulated wire attaining red heat	HWI or Glow Wire	IEC 60695-2-20
	during a fault causing possible ignition		
	Loose connections and broken leads in the	HAI	IEC 60695-1-1
	vicinity of the polymer material causing arcing		
Mechanical	Mechanical failure due to degradation of	Tensile Strength and	ISO 527-3,
	insulating material	Tensile Elongation	IEC 60216-5
			(thermal aging)
	Thermal stress due to material expansion	Thermal Expansion (CTE)	ISO 11359-2
	Adhesion to glass and backsheet	Bond strength,	??
		Peel strength	SAE Automotive or
			IEC 60950-1
			(2.10.11)
	Inter-layer adhesion of backsheet	Bond strength,	??
		Intra-layer adhesion	SAE Automotive or
			IEC 60950-1
			(2.10.11)
	Surface treatment, chemical, corona treatment	Surface finish rating	??
		scale for machined	
		metals?	

Certification and Performance Certification and the Product Development Cycle

Harmonization of IEC 61730 & UL61730

- Goal to minimize national differences
 IEC 61730 Amendment
- Revisions include
 - Standardized PV material characterization tests
 - Module level tests to address creep, flow, displacement and delamination failures
- International effort
 - Growing participation
 - Now is the time to get involved!

Thank You for your attention and future participation!

Tim Zgonena Underwriters Laboratories Inc (UL)

