Overview of Technology Pathway Partnerships Projects

DOE Solar Energy Technologies Program March 8-9, 2007 For Media Information, Contact: <u>kevin.brosnahan@ee.doe.gov</u> For Technical Information, Contact: <u>scott.stephens@ee.doe.gov</u>

Making Solar Cost-Competitive Nationwide by 2015

Market Sector	Price Range (¢/kWh)	Benchmark 2005	Target 2010	Target 2015
Residential	5.8-16.7	23-32	13-18	8-10
Commercial	5.4-15.0	16-22	9-12	6-8
Utility	4.0-7.6	13-22	10-15	5-7

Technology Pathway Partnership Objectives

Bring Better Products to Market, Enable New Applications

- Develop modular, turnkey PV systems that provide residential and commercial customers with a complete solution and attractive value proposition (e.g. enabling BIPV and zero-energy homes).
- Develop designs and supply chains for large-field PV installations to service large commercial and utility RPS generating requirements.
- Help U.S. companies to leapfrog global competition, by providing the best designed, lowest-cost solutions for the applications above.

Foster Development of the Domestic PV Industry

- Catalyze collaboration across the value chain to: (1) squeeze out costs; (2) better optimize PV system design; and (3) assure superior performance/reliability.
- Demonstrate novel manufacturing processes that provide U.S. industry with a cost advantage, and that facilitate manufacturing scale-up.

Impact the U.S. Energy Economy With Results

- Accelerate development of U.S.-produced PV systems so that PVproduced electricity reaches parity with the cost of electricity in gridtied markets across the nation by 2015.
- Expand domestic installed PV generating capacity to 5-10 GW.

Technology Pathway Partnerships Project Research & Development Approach

	SCALE SY	STEM TES	Tin
FUL			WG .
A			
			191
E			
Λ,	ANUFACT	URING DE	Wo

INVERTER

TECHNICAL IMPROVEMENT OPPORTUNITIES		METRICS			
TEIR 1 TIOs	TEIR 2 TIOs	Performance	Cost	0&M	Reliability
Modules	Module				
	Absorber				
	Cells and Contacts				
	Interconnects				
	Packaging				
	Manufacturing				
Inverters & BOS	Inverter				
	Inverter Software				
	Inverter Components/Design				
	Inverter Packaging/Manufacturing				
	Inverter Integration				
	Other BOB				
Storage	(Under Consideration)				
SE&I	Systems Engineering & Integration				
	Manufacturing/Assembly				
	Installation/Maintenance				

• Teams will target selected components for R&D, based on analysis of impact on total system performance.

• Teams demonstrate new manufacturing approaches for selected components.

• Teams deliver full system for test, built from newly-developed and/or commercial components.

Technology Pathway Partnerships (TPP's) Details of Selected Projects

Projects will have a significant impact on the domestic energy economy:

- Enable expansion of the annual U.S. production capacity of PV systems from 240 MW in 2005 to as much as 2,850 MW by 2010, representing a 10-fold increase.
- Research toward lowering the cost of electricity from PV to \$0.05 \$0.10 per kWh by 2015 – a price that is competitive in markets nationwide. [Range given because of various applications (i.e., residential, commercial, utility)]

Projects will include a broad cross-section of U.S. industry:

- Involving over 50 companies, 14 universities, 3 non-profits and 2 national laboratories in 20 states across the U.S. (subject to change)
- Teams will contribute well over 50% of the funding for these projects.

Selected projects will be lead by the following corporations:

- Amonix (Los Angeles, CA)
- BP Solar (Frederick, MD)
- Boeing (Los Angeles, CA)
- Dow Chemical (Midland, MI)
- General Electric (Newark, DE)
- Miasole (Santa Clara, CA)

- Nanosolar (Palo Alto, CA)
- Sunpower (San Jose, CA)
- Powerlight (Berkeley, CA)
- United Solar Ovonic (Detroit, MI)
- Konarka (Boston, MA)
- GreenRay (Boston, MA)
- Practical Instruments (Pasadena, CA)

DOE'S Funding Will Invest Across the U.S. R&D Base

YEAR ONE DOE FUNDING

DOE's Funding Promotes Diverse Partnerships

DOE-Funded R&D Will Take Place Across the U.S.

DOE's Portfolio Balances Technology, Maturity & Risk

DOE-Funded R&D Will Increase Module Efficiency, Yielding Greater Power Without Increased Costs

DOE-Funded R&D Enables Scale-able Manufacturing Processes That Will Be Implemented by Industry

Technology Pathway Partnerships

nanosolar

bp solar

GREENRAY, INC.

System Project

Low Cost High Concentration PV Systems for Utility Power Generation (Amonix)

Technologies Addressed

Concentrating PV

Description

A low-cost, high-concentration PV system for utility markets. This project will utilize our realworld, utility field-tested concentrator system and incorporate the most advanced solar cell technology (> 40 % efficiency) to produce the lowest cost of PV-generated electricity.

Key Metrics				
	LCOE (\$/kWh)	Manufacturing Capacity (MW)		
Baseline (2006)	\$0.3300	1		
2009-2010	\$0.1400	60		
2014-2015	\$0.0600	1000		

Resources (\$)		
DOE Total	DOE Yr. 1	Cost Share (total)
\$14,800,000	\$3,200,000	\$14,800,000

Participants			
Lead	CYRO Industries / Rockaway, NJ Arizona State University / Tempe, AZ		
Torrance, CA	UNLV / Las Vegas, NV Xantrex / Burnaby, British Columbia Imperial Irrigation District / Imperial, CA Hernandez Electric / Imperial, CA NREL / Golden, CO Northstar / Gardena, CA SpectroLab / Sylmar, CA Micrel / San Jose, CA JOL Enterprises / Yuma, AZ		

High Efficiency Concentrating Photovoltaic Power System (Boeing)

Technologies Addressed

Concentrating PV Non-Module R&D

Description

High-efficiency concentrating photovoltaic power system. The Boeing TPP will develop a concentrating PV power system targeted at utilityscale markets drawing on Spectrolab multijunction solar cell technology and advanced high concentration non-imaging optics.

Key Metrics				
	LCOE (\$/kWh)	Manufacturing Capacity (MW)		
Baseline (2006)	\$0.3181	1		
2009-2010	\$0.1494	20		
2014-2015	\$0.069	150		

Resources (\$)		
DOE Total	DOE Yr. 1	Cost Share (total)
\$13,300,000	\$5,900,000	\$16,500,000

Participants				
<u>Lead</u> Huntington Beach, CA	Light Prescription Innovators / Altadena, CA University of California / Merced, CA PV Powered / Bend, OR Array Technologies Inc. / Albuquerque, NM James Gregory Associates/Sylarus / Columbus, OH Southern California Edison / Rosemead, CA NREL / Golden, CO Caltech / Pasadena, CA			

Grid Parity using BP Solar C-Si Technology (A Systems Class Application) (BP Solar International)

Technologies Addressed

Crystalline Silicon (Wafer-based) Non-Module R&D

Description

Low-cost approach to grid parity using crystalline silicon. This project will cover all aspects of the PV product chain from raw materials through installation of the systems. Key aspects are development of solar grade silicon feedstock, implementation of Mono2[™] casting, optimized thin cell processing and modules designed for integration into roofs.

Key Metrics				
	LCOE (\$/kWh)	Manufacturing Capacity (MW)		
Baseline (2006)	\$0.1690			
2009-2010	\$0.1076			
2014-2015	\$0.0722			

Resources (\$)		
DOE Total	DOE Yr. 1	Cost Share (total)
\$19,100,000	\$7,500,000	\$20,000,000
Participants		
Lead Frederick MD	Specialized Tech. Resources / Enfield, CT	Fat Spaniel / San Jose, CA Sacramento Municipal
Dow Corning / Midland, MI Ceradyne / Costa Mesa, CA Bekaert / Rome, GA Ferro / Cleveland, OH	Romax / York, PA Palo Alto Research Center / Palo Alto CA AFG Industries / Kingsport, TN ATS-Ohio / Lewis Center, OH Xantrex / Burnaby, British Columbia	Sacramento, CA Recticel / Clarkston, MI Georgia Tech / Atlanta, GA U of Central Florida / Orlando, FL AZ State / Tempe, AZ

Fully Integrated Building Science Solutions for Residential & Commercial Photovoltaic Energy Generation (Dow Chemical Company)

Technologies Addressed

Thin Films (Non-Si-Based) Integrated Solar System Design

Description

PV-integrated residential and commercial building solutions. This project will employ the team's expertise to explore improvements in PV technology, component design, packaging, integration, and installation to achieve major cost reductions for producing electricity in a building integrated, grid connected system.

Key Metrics				
	LCOE (\$/kWh)	Manufacturing Capacity (MW)		
Baseline (2006)	\$0.1973	0		
2009-2010	\$0.1122	5		
2014-2015	\$0.0603	100		

Resources (\$)		
DOE Total		DOE Yr. 1	Cost Share (total)
\$9,400,000	\$9,400,000		\$9,600,000
Participants			
<u>Lead</u> Midland, MI	M Sơ Fr Ui IB	iasole / Santa Clara olFocus / Palo Alto, ronius / Brighton, M niversity of Delawar IS Associates / Wal	ı, CA CA l e / Newark, DE ltham, MA

A Value Chain Partnership to Accelerate U.S. PV Growth (GE Energy LLC)

Technologies Addressed

Crystalline Silicon (Wafer-based) Thin Films – (Non-Si-Based) Non-Module R&D

Description

GE will collaborate with a team of industrial partners to develop various solar technologies, simplifying the integration of PV systems into residential and commercial buildings. This program will help foster solar energy industry growth, resulting in reduced greenhouse gas emissions and favorable economics.

Key Metrics			
	LCOE (\$/kWh)	Manufacturing Capacity (MW)	
Baseline (2006)	\$0.1900	20	
2009-2010	\$0.0890	300	
2014-2015	\$0.0580	1500	

Resources (\$)		
DOE Total	DOE Yr. 1	Cost Share (total)
\$18,600,000	\$8,100,000	\$24,900,000

Participants	
Lead	REC / Moses Lake, WA Xantrex / Burnaby, BC
Newark, DE	Solaicx / Santa Clara, CA Georgia Tech Research Corp / Atlanta, GA
	North Carolina State University / Raleigh, NC University of Delaware / Newark, DE

System Project

Flexible Integrated PV System (Miasolé)

Technologies Addressed

Thin Films (Non-Si-Based) Non-Module R&D

Description

In order to meet the DOE's goals for SAI, Miasolé is focused on driving significant cost reductions throughout the value chain. Specifically, Miasolé will focus on the following programs: roll to roll thin film solar cell manufacturing, roll to roll flexible module manufacturing, integration of module electronics, simplification of installation procedures and increased distribution efficiency.

Key Metrics			
	LCOE (\$/kWh)	Manufacturing Capacity (MW)	
Baseline (2006)	\$0.1900	85	
2009-2010	\$0.0670	1200	
2014-2015	\$0.0530	5000	

Resources (\$)				
DOE Total		DOE Yr. 1	Cost Share (total)	
\$20,000,000		\$5,800,000	\$26,700,000	
Participants				
<u>Lead</u> Santa Clara, CA	Exeltech / Fort Worth, TX Carlisle-Syntec / Carlisle, PA University of Colorado / Boulder, CO University of Delaware / Newark, DE Sandia National Labs / Albuquerque, NM NREL / Golden, CO			

Delivering Grid-Parity Solar Electricity on Flat Commercial Rooftops (Nanosolar, Inc.)

Technologies Addressed

Thin Films (Non-Si-Based)

Description

Grid-parity PV system for large-area, flat commercial rooftops. This project will work on cost-efficient components and system integration for commercial buildings with large-area, flat rooftops based on ultra-low-cost thin-film CIGS PV cells.

Key Metrics		
	LCOE (\$/kWh)	Manufacturing Capacity (MW)
Baseline (2006)	\$0.0730	
2009-2010	\$0.0600	
2014-2015	\$0.0520	

New Solar Electricity Cells Based on the Economics of Printing

Resources (\$)		
DOE Total		DOE Yr. 1	Cost Share (total)
\$20,000,000		\$1,100,000	\$20,000,000
Participants	Participants		
<u>Lead</u>	Conergy AG / Hamburg, Germany		
Palo Alto, CA	SunTechnics, Inc. / Sacramento, CA SunLink, LLC/ Larkspur, CA		

System Project

Grid-Competitive Residential and Utility Solar Power Generating Systems (SunPower Corporation)

Technologies Addressed

Crystalline Silicon (Wafer-based) Non-Module R&D

Description

Grid-competitive residential solar power generating systems utilizing industry-leading modules already in production. This project will research lower-cost ingot and wafer fabrication, automated manufacture of back-contact cells, and new module designs, to lower costs while improving the aesthetics of residential PV installation and will provide the marketplace with a more streamlined sales/installation process.

Key Metrics			
	LCOE (\$/kWh)	Manufacturing Capacity (MW)	
Baseline (2006)			
2009-2010			
2014-2015			

Resources (\$)		
DOE Total	DOE Yr. 1	Cost Share (total)
\$17,900,000	\$7,700,000	\$18,200,000
		·

Participants			
<u>Lead</u>	Solaicx / Santa Clara, CA		
San Jose, CA	MIT / Cambridge, MA NREL / Golden, CO Xantrex / Burnaby, British Columbia Other Partners		

System Project

Low Cost Thin Film Building-Integrated PV Systems (United Solar Ovonic)

Technologies Addressed

Other Si (Non-Wafer-Based) Non-Module R&D

Description

Low-cost thin-film building-integrated PV systems. This project will focus on reducing the delivered cost of electricity by lowering the cost of multibandgap, flexible thin film PV modules, and by reducing system cost using innovative installation methods and by lowering the cost of balance-ofsystem components.

Key Metrics		
	LCOE (\$/kWh)	Manufacturing Capacity (MW)
Baseline (2006)	\$0.1580	60
2009-2010	\$0.1280	300
2014-2015	\$0.0760	1000

Resources (\$)		
DOE Total	DOE Yr. 1	Cost Share (total)
\$19,300,000	\$2,400,000	\$19,600,000

Participants	
Lead	SMA America / Grass Valley, CA Sat Con Technology Corporation / Worchester, MA PV Rowered / Bend, OR
Auburn Hills, Ml	ABB Group / Zurich, Switzerland Solectria Renewables / Lawrence, MA Developing Energy Efficient Roof Systems /Ripon, CA Turtle Energy / Linden, NJ SunEdison / Baltimore, MD University of Oregon / Portland, OR Syracuse University / Syracuse, NY Colorado School of Mines/ Golden, CO NREL / Golden, CO

Subsystem Project

Development of an AC Module System (GreenRay)

Technologies Addressed

Non-Module R&D

Description

Development of an AC module system. This team will design and develop a high-powered, ultrahigh-efficiency AC module that contains an inverter, eliminating the need to install a separate inverter and facilitating installation by homeowners. Research will focus on increasing the lifetime of the inverter.

Key Metrics		
	LCOE (\$/kWh)	Manufacturing Capacity (MW)
Baseline (2006)	\$0.34	1
2009-2010	\$0.18	4
2014-2015	\$0.09	180.25

Resources (\$)		
DOE Total	DOE Yr. 1	Cost Share (total)
\$2,300,000	\$400,000	\$2,500,000

Participants	
<u>Lead</u> Lincoln, MA	Sanyo Energy / Frisco, TX Tyco Electronics / Harrisburg, PA Coal Creek Design / Lafayette, CO BluePoint Associates / San Luis Obispo, CA National Grid / Westborough, MA

Subsystem Project

BIPV Dye Cell/Organics PV (Konarka Technologies, Inc.)

Technologies Addressed

Next Generation PV – Organics

Description

Building-integrated organic photovoltaics. This project will focus on manufacturing research and product reliability assurance for extremely lowcost photovoltaic cells using organic polymers that convert sunlight to electricity.

Key Metrics		
	LCOE (\$/kWh)	Manufacturing Capacity (MW)
Baseline (2006)		
2009-2010		
2014-2015	<\$0.10	1,000-3,000

Resources (\$)		
DOE Total	DOE Yr. 1	Cost Share (total)
\$3,600,000	\$1,200,000	\$5,200,000

Participants	
<u>Lead</u>	University of Delaware / Newark, DE NREL / Golden. CO
Lowell, MA	

Fully Automated Systems Technology: A Systems-Driven Approach to Cost Reduction (PowerLight)

Technologies Addressed

Non-Module R&D

Description

PV cell-independent effort to improve automated manufacturing systems. This project will focus on reducing non-cell costs through the design and manufacture of integrated PV products. Deployment of these products will be facilitated by the development of automated system design tools.

Key Metrics		
	LCOE (\$/kWh)	Manufacturing Capacity (MW)
Baseline (2006)		
2009-2010		
2014-2015		

Resources (5)		
DOE Total		DOE Yr. 1	Cost Share (total)
\$6,000,000		\$2,800,000	\$6,300,000
Participants			
<u>Lead</u> Berkeley, CA	Sp Er Au Ui Ui Of TE	Decialized Technolo nfield, CT utodesk / San Rafae niversity partner tility partner TBD, Lo ther Small Business 3D / Location TBD	gy Resources, Inc. / el, CA ocation TBD ses or Consultants

Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to the Rooftop (Practical Instruments)

Technologies Addressed

Concentrating PV

Description

High-concentration CPV systems for commercial rooftop applications. This project will develop a combination of high-concentration optics and a practical approach to rooftop tracking to dramatically increase PV power density. The technology will be paired with high-efficiency multi-junction cells enabling exceptionally high power solar panels. The modules will have a flat panel configuration with fully integrated tracking for a conventional installation process.

Key Metrics		
	LCOE (\$/kWh)	Manufacturing Capacity (MW)
Baseline (2006)	\$0.1470	1
2009-2010	\$0.0790	40
2014-2015	\$0.0560	600

Resources (\$)		
DOE Total	DOE Yr. 1	Cost Share (total)
\$4,000,000	\$2,200,000	\$4,100,000

Participants	
Lead	SpectroLab / Sylmar, CA
Pasadena, CA	Sandia National Labs / Albuquerque, NM MIT / Cambridge, MA SunEdison / Baltimore, MD