Update on Optically Interconnected Inverter System

The DOE Workshop on Systems Driven Approach To Inverter R&D

April 23, 2003

Paul Grems Duncan, Airak, Inc. 9058 Euclid Avenue Manassas, Virginia 20110-5308 voice: (703)330-4961 fax: (703)330-4879 pduncan@airak.com

Overview

- > Program Status
- > Anticipated Markets
- > Future

Background: Project Goals

- Primary: Develop and test an advanced preproduction three phase, 5 megawatt inverter system based upon HV-IGBTs switches with complete optical isolation (control and sensing) between the high power subassemblies and the low power control and signal processing hardware.
- Secondary
 - Successfully Implement Robust Heat Pipe Thermal Solution
 - Design the System for Manufacturability "...from the Start..."
 - Build the Complete System for \$150/KVA @ >99% Efficiency
 - Develop Optical Current/Voltage/Temperature Transducers for Introduction into Other Electrical Markets

Background: Team Members

Background: Motivation

- There exist few cost-effective, efficient power conversion topologies for high-power markets.
- > High-power conversion systems are largely based upon smaller conversion systems with applied scaling rules, e.g., a 5-MW system ~ size of 10, 500 KW systems.
- There are no optically-isolated/interconnected high-power systems in the market today.
- Solution: Optical Sensor Technologies + High-Voltage IGBT Power Systems + Advanced Heat-Pipe Cooling Solutions

Background: System Advantages

> HV-IGBT Topology Allows:

- Elimination of Current Snubbers and Voltage Clamps
- Simplified Gate Drive Circuitry and Isolation
- Higher Frequency Switching (~ 5 kHz)
- > Optical Transducers and Interfaces Allow:
 - Intrinsic Galvanic / Electrical Isolation
 - EMI Immunity => Increased Reliability
 - Increased Equipment and Personnel Safety

Background: System Advantages (Con't)

Integrated Heat-Pipe Cooling System Allows:

- Considerable Life-Cycle Cost Reduction over Conventional Pumping Systems
- Lower (Minimal) Maintenance Requirements
- Higher Reliability
- Smaller Footprint / Compact Design
- Degraded Mode of Operation Possible
- Up to 20 KW Heat Removal per Phase Leg

Mitsubishi HV-IGBT Packages

- Common 190 x 140 mm Footprint
 - CM1800HB: 1.7 KV, 1800A
 - CM1200HB: 2.5 KV, 1200A
 - <u>CM1200HB: 3.3 KV, 1200A</u>
 - CM900HB: 4.5 KV, 900A
- Scaleable Phase Leg Designs Possible
- Efficient Interface to Buss Bar

Therma-ChargeTM Multi-Kilowatt Heat Pipe Heat Sink

9

Power Rating: 10,000 watts (Modified Standard 835 Design)

Nom. Air Flow: 600 CFM per 2 Fans

Working Fluid: Water

Operating Range: 40° C – 180° C

New Design Tested to $\triangle 43^{\circ}$ C at 8250W True Power Dissipation

1700 KVA Phase Leg Topology

PRODUCT DEVELOPMENT COMMERCIALIZATION MANUFACTURING

Single Phase Building Block Sensor & Control Configuration

5-MW 3-Phase Multi-Level Inverter

73"

Planar Bus

Instrumentation Enclosures

Ducted

Plenum

Column

20KW Cooling Assys per Phase Leg + Fan Packs (6) 53" Weight: ~1450 lbs. **DC Input:** 50V-2.5kV **Projected \$ / KW:** \$125/kW Actual \$ / KW: **\$90/kW**

ThermaCharge

Rationale for CAD Effort

- Ensure Everything "Fits" / Get it Right the First Time
- Self Documenting for Manufacturing / More Cost Efficient
- IDEASTM Models Directly Import Into Maxwell 3D for Field FE Solver Calculations
 - Parametric Solver Shows Optimum Placement of High-Power Cables, Interconnecting Buss Bars, etc.
 - ES and EM Shielding Requirements for 5-MW
 Operation can be Inferred from 300 KW Model
 Convergence → Greater Chance of Success @ 5 MW

PRODUCT DEVELOPMENT COMMERCIALIZATION MANUFACTURING

Program Status as of 4/23/03

- Currently In Month 11 of 24 Month Program (Full Contract Awarded September 26^{th,} 2002); Program is On Schedule
- > All Major Subsystems have been Implemented in CAD-Space
- All Major Hardware has been Procured and Receipt is Anticipated by End of April
- Closed-Loop Control System Development Underway

Single Phase-Leg Size Reference & Major Components

Cooling_ Fins

Cooling Fans

- Heatpipes

Copper Thick-Block

15

850 uF Capacitor

Program Status (Con't)

- Optical Current Sensors are Undergoing Extensive
 Temperature Testing to Ensure Long-Term
 Performance
- Optical Temperature Sensors are Ready for Integration & Testing
- The Packaging for the Optical Voltage Sensors is being Developed for Integration into the Planar Buss Bar

Anticipated Markets

- Emergency Power Markets
 - Short Term Ride Through Appl.
 - Longer Term UPS Applications
- Distributed Energy Markets
- Advanced Power Conversion Technologies
 - Fuel Cell Manufacturers
 - Flywheel Manufacturers
 - Wind & Hydro Turbine Mfrs.
 - Solar Manufacturers

> Military Markets

- Fuel Cell Applications
 - ✓ Submarines
 - ✓ Afloat Forces
 - Forward Deployed Forces
 - "All Electric" Ship
 - ✓ Zonal Power Distribution
 - Prime Mover Power Conversion

Upcoming Major Milestones

- > 1700 KVA Single Phase Assembly/Testing Underway (Open Loop, Conclude June '03)
- Low-Power Single Phase Leg Close-Loop Testing (Start June '03)
- > 3-Phase Low-Level (<300 kW) Testing (Start Aug '03)
- > 3-Phase Inverter Delivery to AEP (1st Qtr 2004) or....?

