The SunShot Swerve

Dick Swanson
President Emeritus, SunPower Corporation

We are at a Seemingly Paradoxical Time

 Lots of doom and gloom over excess capacity, depressed prices, and reduced incentives

However

 The market is huge (~\$100 billion), growing rapidly, and quickly reaching cost parity

Key Success Metrics for Solar Today

- Technical Feasibility
 - -High penetration grid impacts
- Cost and Financial Feasibility
 - Efficiency and materials utilization
 - Manufacturing capital cost and scalability
 - Reliability
- Societal Feasibility
 - Environmental impacts

Why the Swerve is Needed

- We have made remarkable progress. Solar technology is close to becoming a major source of clean energy today.
 - Cost approaching parity with other sources
 - Installed capacity becoming meaningful
- But there remain many cost and technical barriers before the dream is fully realized.
 - We need a push…a swerve.

The Far-Reaching Aspects of SunShot

- Set very aggressive goals for module and BOS costs that have spurred innovation at all companies.
- Recognized importance of reducing BOS and soft costs.
- Recognized the importance of understanding grid impacts at high penetration.

SunShot Initiative High Penetration Solar Portal

EERE » SunShot Initiative » SunShot Initiative High Penetration Solar Portal

SunShot Initiative High Penetration Solar Portal

Login | Register

SEARCH

Search Help >

Welcome, Guest!

Printable Version

About

Grid Integration Research & Development Projects

Advanced Concepts

Completed Projects

Demonstration Projects

DOE's High Penetration Solar Deployment Projects

California Public Utilities Commission Projects

Technical Topics

Solar System Technologies

Solar System Modeling and Analysis

Solar Resource

Transmission Planning and Operations

Distribution Planning and Operations

Codes and Standards

Past Workshops

Partnerships

Ask an Expert

Call for Papers: IRED

Plug-and-Play Funding Available

Forecasting Accuracy Funding Opportunity

Paper Addresses Interconnection Screens

FEATURE ARTICLE

Updating Distribution Interconnection Screening Procedures: From One-Size-Fits-All to Custom-Tailored Strategies

May 23, 2012

Given the rapidly expanding solar market, the authors of a recent report examined the technical basis for the current 15% penetration screen. Their findings helped start a

ASK AN EXPERT

- Q. Is the DEW model a 3rd party software program and how was this conversion made?
- A. DEW, or Distributed Engineering Workstation, is a 3rd party product available from Electrical Distribution Design. A custom converter (written in

NEWS

NREL Develops More Precise Look at Cradle-to-Grave Greenhouse Gas Emissions for Energy Technologies

May 4, 2012 | NREL News

Energy Department Announces Funding to Develop "Plug-and-Play" Solar Energy Systems for Homeowners

April 24, 2012 | U.S. Department of Energy - Press Releases

More News

EVENTS

Sun Shot Grand Challenge: Summit and Technology Forum

June 13, 2012 - June 14, 2012

More Events

FEATURES

Distributed Wind and Solar Interconnection Workshop February 2012

Get the latest on High Penetration

https://solarhighpen.energy.gov/

Commercial Solar Cell, ca. 1960 Hoffman Electronics

4.2 GW PV in 2009...10+ GW in 2010

Monthly Electricity Production of PV and Wind in Germany 2012

Monthly Production Solar and Wind

- The maximal sum of PV and wind production was 7,6 TWh in January 2012
- The minimal sum was 5,6 TWh in February 2012
- The total electricity need of Germany is about 600 TWh/yr

Graph: B. Burger, Fraunhofer ISE; http://www.ise.fraunhofer.de/en/news Data: EEX Transparency Platform

German Feed-in Tariff is Less Than Retail in 2012!

PV Power Plants are Cost Competitive Today 2012 LCOE by Resource \$/MWh: 2010 USD

Solar PV Power Plants are Cost Competitive 2015 LCOE by Resource \$/MWh: 2012 USD

Historical PV Learning Curve (\$2010)

Comparison to Actual

Zooming in on Recent Times

Zooming in on Recent Times

NREL Si Roadmap in preparation (Goodrich, A. et al.)

Technology Development Central to Cost Roadmap

Technology Development Central to Cost Roadmap

THE IMPORTANCE OF EFFICIENCY

c-Si Value Chain:

Value of Efficiency

- Lowers area-related costs

- Reduced materials costs
 - Less module and system area
- Reduces installation costs
- Reduces shipping costs (module, BOS)

T5 Shipping Pallet

T5 Rapid Installation

Lowers \$/W projects costs

- For area-constrained projects, it allows more Watts for the project
 - Reduces \$/W Fixed Costs: Distribute sales, design, permitting, etc.) across more watts
 - Increases Customer NPV: Larger system power provides higher project NPV even beyond the \$/W savings
- For non-area-constrained, it can still give lower fixed costs by allowing optimum selection of mounting location and reduced site preparation
- Increases financial benefit of tracking

Gen 3 Production Data

Electrical parameters	Median value
Voc (volts)	0.727
Jsc (mA/cm2)	40.0
Fill factor	81.2 %
Efficiency	23.6 %

- Efficiency distribution from recent production run
- 23.6 % efficiency median, peak cells over 24 %

>21 % Total Area Module Efficiency

- 96 cell module measured at NREL 345.9 watts
- 1.63 m² including frame
- 21.2 % total area efficiency
- Module manufactured when cell efficiency median was 23.2 %
- Expected yield to > 21 % module efficiency is high

Area (m2)	Power (W)	Voc (V)	Isc (A)	FF (%)
1.63	345.9	69.4	6.264	79.6

Selective Emitters + Advanced Metallisation

High-efficiency Solar Cells

Properties:

- Dielectric rear passivation
- Lowly doped emitter

			J _{SC} [mA/cm²]	V _{oc} [mV]	FF [%]	pFF [%]	η [%]
120 Ω/	Best cell	38,2	673	81,3	84,2	20,9*	
sq		¥ 1 4 cells	37,5	671	81,6	83,8	20,4

^{*}independently confirmed by CalLab PVCells at Fraunhofer ISE

© Fraunhofer ISE

Future Trends in Crystalline Silicon

- Evolutionary
 - Thinner wafers
 - Cu metal
 - Diamond wire sawing
 - Improved efficiency
 - Ink jet patterning
 - New module approaches
- Revolutionary
 - Kerfless wafers
 - Heterojunctions and IBC
 - Cell processing at the module level

Innovation Issues Today in PV Modules

- Scale advantage very large for module makers (c-Si)
- Costs continue to decrease relentlessly
 - The moving target issue
- Efficiency of c-Si continues to increase
 - More moving target, > 20% cells will be the norm soon
- Requires massive manufacturing investment to make a meaningful contribution
 - Large risk for unproven technology
 - 20% global electricity production→5,000 sq. mi. of PV modules
- Product must last outdoors for 25 years
 - Hard to prove without years of field experience

All Viable Solar Technologies Now Must Have a Credible Path to \$1/W*

- Crystalline silicon
- Thin films (a-Si, CdTe, CIGS, CZTS)
- CPV
- CSP

Crystalline Si must be considered a front runner in this quest.

New technologies (OPV, dye-sensitized, 3rd generation...)

^{*}Constant 2010 dollars, adjusted for tracking, energy/W of modules, direct normal resource (for CPV and CSP), and reliability vs. baseline assumptions.

WE LOOK FORWARD TO THE **CONTINUED CONTRIBUTION OFTHE SUNSHOT PROGRAM** TOWARD THE GOAL OF **EXTREMELY LARGE-SCALE ENERGY GENERATION FROM COST-EFFECTIVE SOLAR**

THANKYOU