U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

DOE Solar Energy Technologies Program Peer Review

Technical Track: CSP Project Name: CSP Applied Research Principal Investigator: Cheryl Kennedy

Denver, Colorado March 9-10, 2009

This presentation does not contain any proprietary or confidential information.

 Reduce cost of concentrator by 50% in order to reduce the cost of solar electricity produced by CSP to be cost competitive with electricity produced by traditional means by 2015

- Mirrors
 - CSP Applied Research
 - Advanced Concepts R&D NREL
 - Advanced Concepts FOA Support NREL
 - CEC/CSP Collaborations
- Receivers
 - Parabolic Trough Development
 - Trough Solar Field
 - Advanced Absorber Materials R&D

- Mark Mehos Program Manager (CSP/NREL)
- Mirrors
 - Cheryl Kennedy Advanced Concepts Task lead
 - Gary Jorgensen SkyFuels/Reflectech CRADA lead
 - Mark Oddo Advanced Concepts research technician
 - Chase Latta Advanced Concepts undergraduate student intern
 - Robert Tirawat Advanced Concepts undergraduate student intern
- Receivers
 - Dr. Chuck Kutscher Parabolic Trough R&D team lead
 - Cheryl Kennedy Advanced Absorber Materials R&D
 - Chase Latta
 - Robert Tirawat

Advanced Concepts R&D

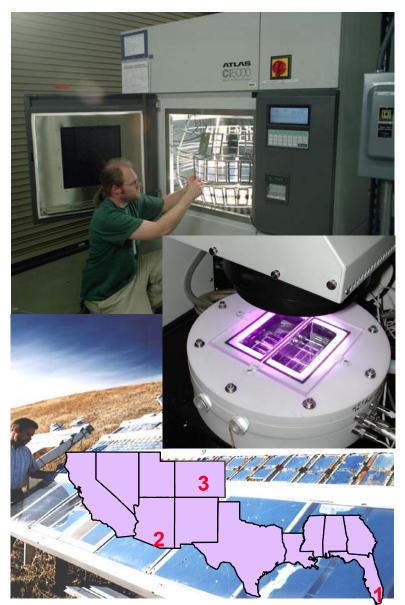
Advanced Solar Mirrors and Optical Materials

- Develop advanced reflectors with:
 - >90% specular reflectance into <4-mrad cone angle
 - 10-30 year lifetime
- Reduce cost of traditional parabolic trough mirror by at least half
- Test durability of optical materials to determine lifetime

- Advanced Concepts
 - Mirror characterization and durability testing
- Advanced Concepts Support
 - Technical support for CSP FOA Advanced Concepts contracts:
 - 3M Hardcoats for polymeric mirrors
 - Abengoa Advanced front surface polymeric reflector
 - Alcoa Aluminum reflector
 - PPG High-value mirrors

Mirror Characterization

- Samples supplied by:
 - Industry
 - Subcontracts
 - Developed in-house
- Measure optical and mechanical properties of potential solar materials
- Characterize samples initially and as a function of outdoor and accelerated exposure time
 - Typically characterize 800-1000 samples/mo



Durability Testing

- Durability of solar materials tested as a function of exposure time
- Samples are exposed at three outdoor exposure test sites and in several accelerated exposure test chambers
 - Roughly 7000 advanced reflector & solar selective samples are currently under test for CSP (& CPV) industry
 - Database of solar materials contains:
 >1000 experiments
 >20,000 samples
 >300,000 measurements
 >21 yr

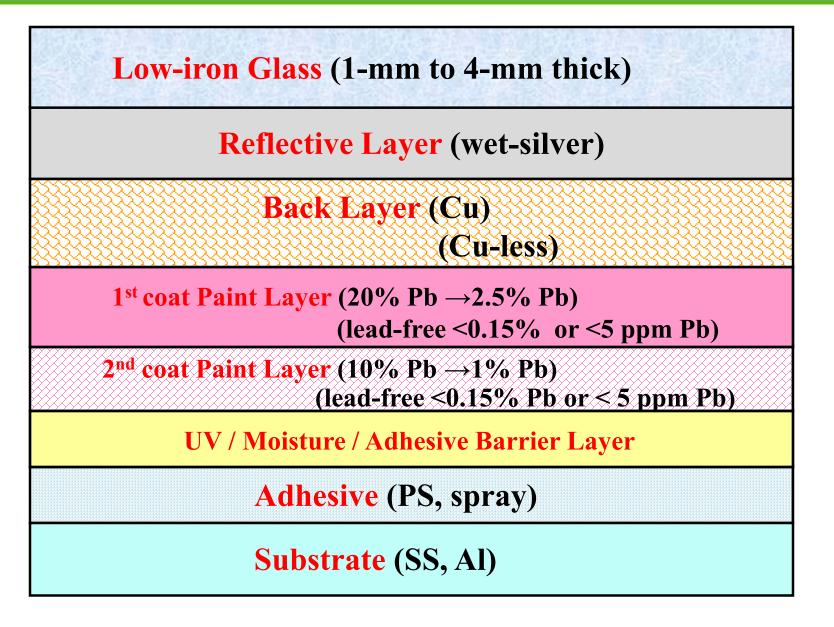
Thick (>3-mm) Glass

- Flabeg (trough mirror supplier)
- RioSolar (new trough mirror)
- Cristaleria Espanola S.A (i.e., Saint-Gobain)
- Saint-Gobain
- PPG (CSP FOA)
- Veridian

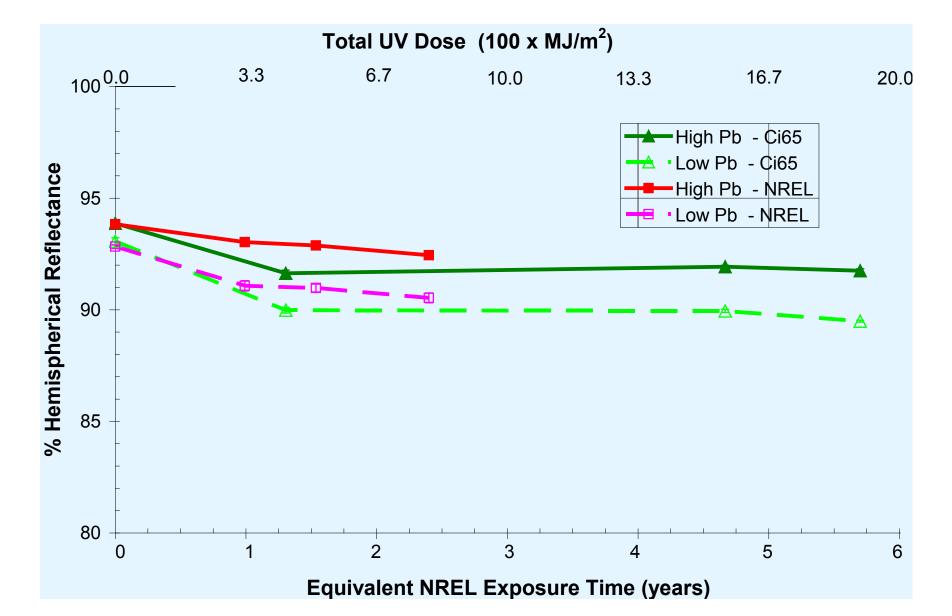
(formerly Pilkington Australia purchased by CSR purchased by Veridian)

- Guardian
- AFNA

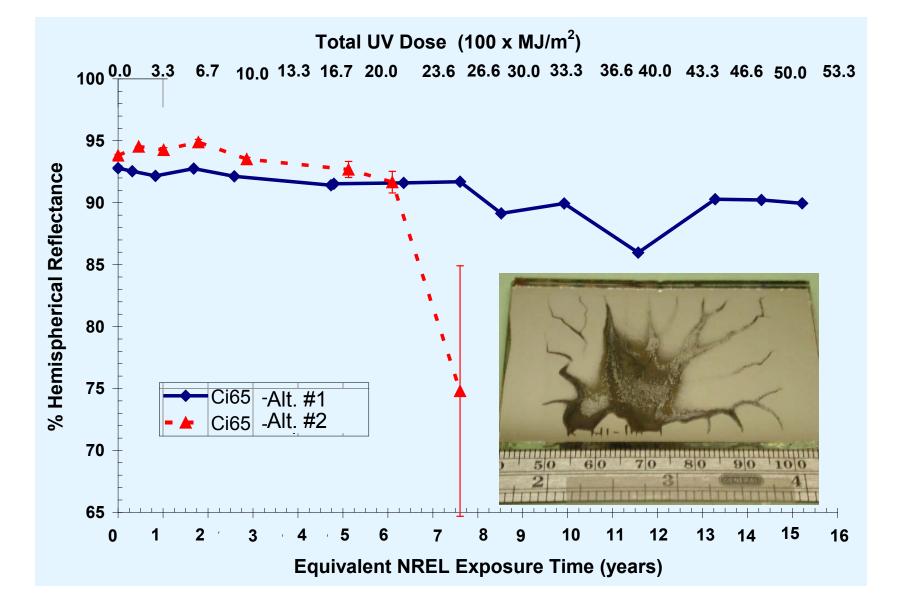
[formerly AFG purchased by Asahi Glass Company (AGC) renamed ASG (A) Flat Glass (F) North America (NA)]


- NSG Pilkington
 [formerly Pilkington purchased by Nippon Sheet Glass (NSG)]
- Arch
- Cardinal
- Gardner
- Vitro America

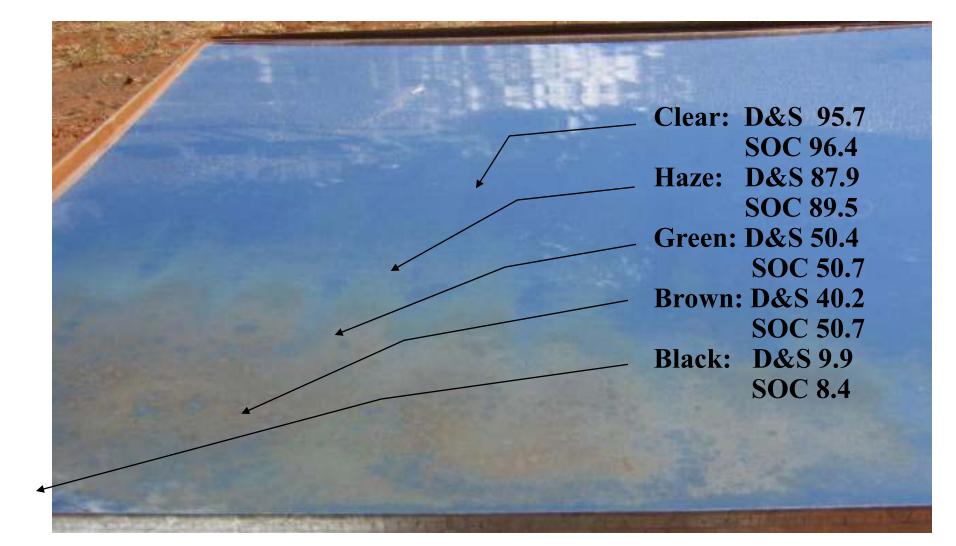
- <u>Thin (~1-mm) Glass</u>
 - AFEU


[formerly Glaverbel (Belgium) purchased by Asahi Glass Company (AGC) renamed ASG (A) Flat Glass (F) EU]

- AF Thailand
- AF Indonesia
- Galvalux
- Naugatuck Glass Company (recently purchased by Flabeg)
- Mirror Coating
 - Valspar
 - Fenzi
 - Spraylat
 - Peacock
- Equipment Manufacturers
 - GlassTech

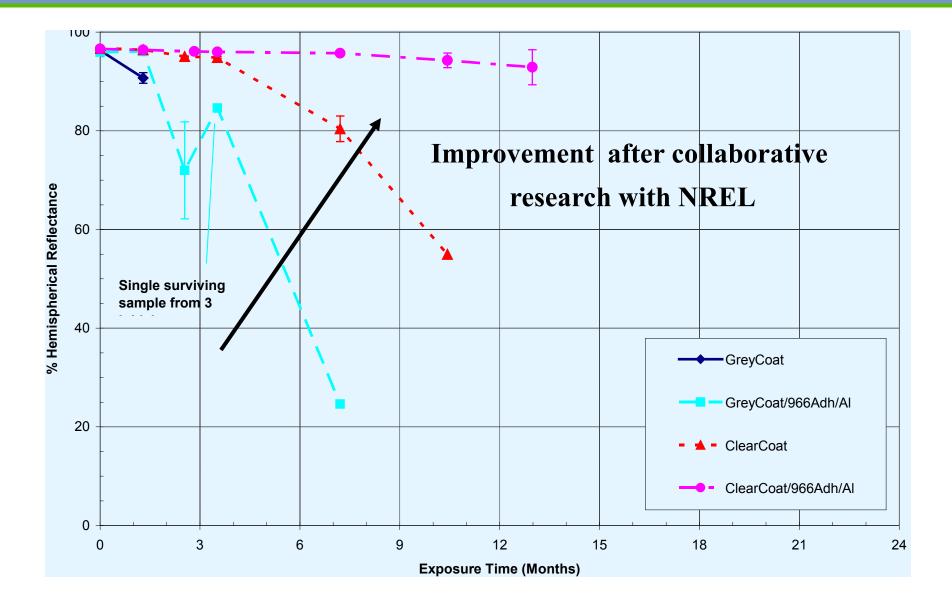


U.S. Department of Energy


Alternate Thick Glass Mirror

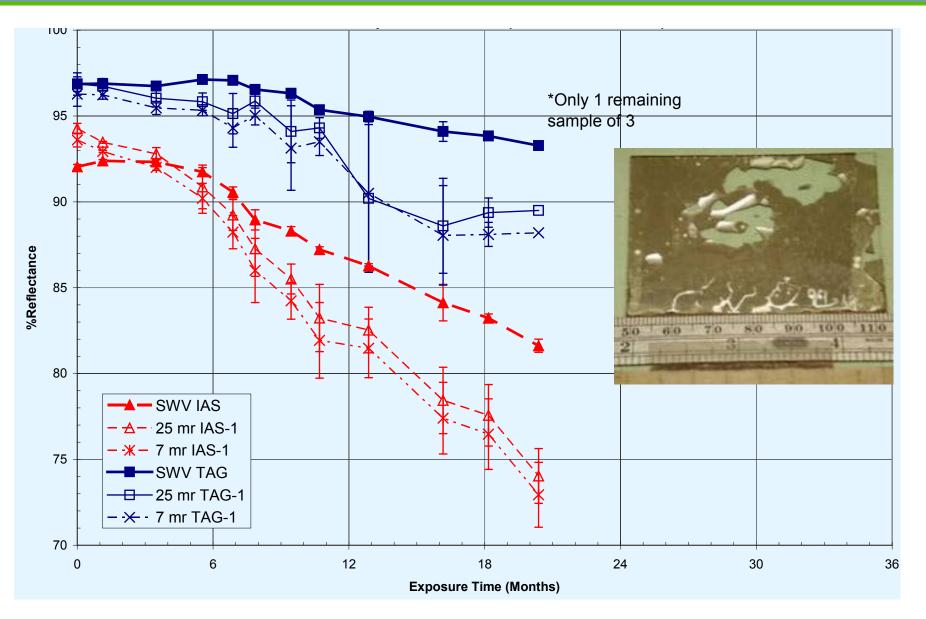
U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Mirror Corrosion after ~2 y in Field



U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable


Thin Glass Mirror

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Durability Varies between Lines

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Issues that Affect Glass Mirror Durability

- Glass

 - Ag since float (<6 mo)
 Fe content (sand, campaign)
 Glass thickness
- **Glass** Cleaning ٠
 - Glass cleanliness
 - Glass sensitizing (SnCl₂ vs. PdCl₂)
- Silver

 - Silver air side of glass
 Silver thickness (0.8 g/m² < t < 1.2 g/m²)
- **Back** layer

 - Copper vs. copper-free
 Separate lines/equipment needed
 Glaverbel vs. Valspar copper-free process
- Lead-free paint system
 - EU (<0.15% Pb) vs. US (1-5 PPM Pb)
 Valspar vs. Fenzi paint system
 1, 2, 3 coat paint system
 Wax content in outer layer of paint
- Adhesive
 - Chlorine-scrubbed
 - Low-bleed paths
- Edge finishing/protection
- Self-cleaning advantage

- No standards for solar glass ٠ mirrors
- Using qualification tests for indoor ٠ mirrors
 - Resistance to damp heat constant atmosphere:
 - 480 hours @ 60°C without defects per ISO 6270-1 or ASTM D1735
 - Resistance to salt spray test
 - 480 hours without defects per ISO 9227 NSS or ASTM B117
 - Resistance to cooper-chloride-acetic acid-salt spray fog tests (CASS)
 - 120 hours without defects per ISO 9227 CASS or ASTM B368
 - Aging/weather exposure test:
 - 5 weeks weather exposure test per ISO 21207, test type "B" or 480 h G1173-03 with no softening of the mounting element adhesive, separation of protective coatings, or defects
- No warranties given
 - Limited 3 y warranty until mounted in use
- Aggressive warranties being requested

- Anodized Aluminum
 - Alanod
 - Alcoa (CSP FOA)
 - Alcan
 - Aluminum Coil Anodizing (ACA)
 - Hydro Aluminum
- Polished Metal
 - Nitinol
 - Microengineered Metals
- Equipment Manufacturers
 - Von Ardenne
 - VaporTech

- <u>Silvered Polymer</u>
 - 3M (CSP FOA)
 - ReflecTech (SkyFuels)
 - Southwall
 - Bennett
 - SolarTech
 - Evoniks
 - GE
 - Rohm & Haas
 - Dow
- Front Surface
 - Abengoa (CSP FOA)
 - Science Applications
 International Corp. (SAIC)
 - JDS Uniphase (JDSU)
 - Solel

•Major FY 2008 Accomplishments:

- -Performed and published solar material durability testing
- -Provided significant industry support to CSP (& CPV) industry
 - •Purchase and installation of new optical & accelerated weathering equipment
 - •Assessment of solar mirrors durability in field
 - •OET results for thin-glass Cu- & Pb-free Ag mirrors
- -Consensus reached new solar mirror specular reflectance, life-time, & cost goals, standards, and qualification tests consistent with current CSP program objectives needed •Steering Committee for DOE "Specialty Glass Needs of the U.S. Solar Industry" workshop

•lssues:

- -Equipment installation unavoidably delayed
- -AET results delayed for thin-glass Cu- & Pb-free Ag mirrors because of installation delays

•Planned Accomplishments in FY 2009 with FY2008 carry-over:

- -Continue to perform & publish solar material durability testing
 - •AET thin-glass mirrors at different RH/T conditions & report OET & AET results
- -Continue to upgrade optical characterization & durability testing
 - •Upgrade database to web accessible
 - •Develop capability to measure 2-mrad specular reflectance in laboratory

•Complete installation of new accelerated weathering testing capabilities ordered in FY 2008 but delivered in FY2009

•Major FY 2008 Accomplishments:

–Provided technical support, critical reviews, optical characterization, and durability testing of reflectors provided under FOA subcontracts

- •3M Hardcoats for Polymeric Mirrors
- •Abengoa Advanced Front Surface Polymeric Reflector
- •Alcoa Aluminum Reflector
- •PPG High Value Mirrors

Issues:

-3M received no-cost extension pending cleanable coating data

- -Abengoa received no-cost extension because subcontract signing delayed until Sept 08
- –Alcoa transitioned to Phase II and added reflective surface down-selection pending specular & accelerated testing results to Phase II
- –PPG requested early transition to Phase II

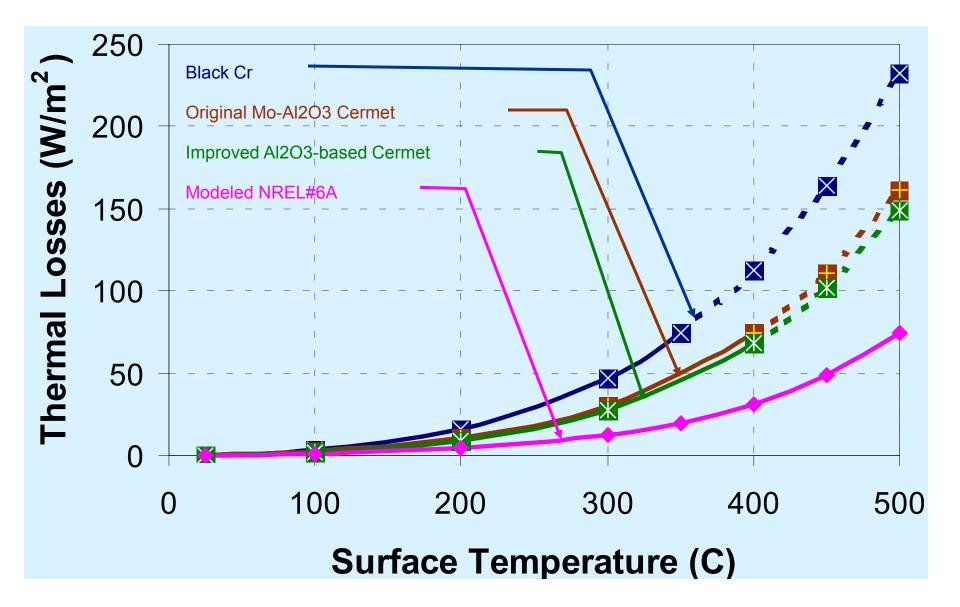
- Mirrors:
 - Continue to perform mirror characterization and durability testing
 - Develop correlation between accelerated exposure testing and outdoor exposure testing for different classes of solar mirrors
 - Continue to provide laboratory support to CSP FOA Advanced Concepts Phase II & III contracts
 - Develop correlation between barrier coating properties and durability of FOA solar mirrors
 - Apply service lifetime prediction (SLP) methodology to FOA materials
 - Develop advanced hardcoats, antisoiling coatings, and cleaning techniques (FY2009 EN >> FY 2010)
 - Develop standards and qualification tests for solar mirrors, CSP components, and systems (FY2009 EN >> FY 2010)
 - SolarPACES Standardization Workshop held at NREL March 3-4, 2009
 - Survey CSP & reflector industry, use SAM to determine specularity and cost goals
- Lab Improvements:
 - Upgrade/install new optical characterization, deposition, & accelerated exposure chambers and upgrade lab space (FY 2009 – FY 2010)
 - Complete upgrade of DC/RF deposition system to closed field unbalanced magnetron (CFUM) and upgrade process & control (FY09 - FY10)
 - Move five-chamber (2 PECVD, DC sputter, thermal evaporation) deposition system and upgrade process & control system (FY10)

U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Receivers:

Advanced Absorber Coatings

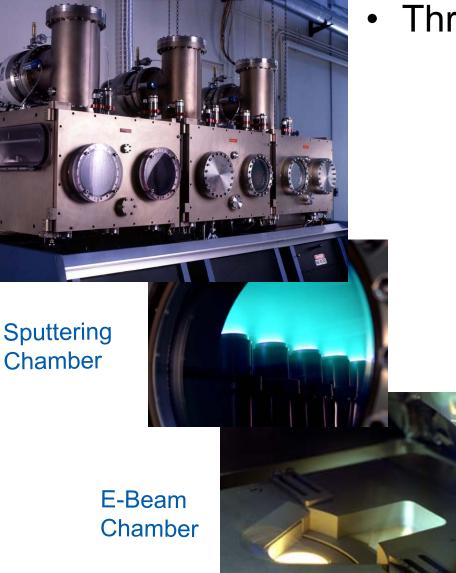
- Develop new, more-efficient advanced solar selective coatings for receivers with:
 - High solar absorptance (α > 0.96)
 - Low thermal emittance ($\varepsilon < 0.07 @ 450^{\circ}C$)
 - Thermal stability > 450°C, ideally in air
 - Improved durability and manufacturability
 - Reduced cost
- Encourage development of US and/or 3rd receiver manufacturer



Comparison of theoretical optical properties for NREL's modeled prototype solar selective coating with actual optical properties of existing materials.

	Commercial (as tested)			Modeled NREL
	Black Cr	Mo-Al ₂ O ₃ Cermet	Al ₂ O ₃ -based Cermet	# 6A
Solar Absorptance	0.916	0.938	0.954	0.959
Thermal Emittance@				
25°C	0.047	0.061	0.052	0.027
100°C	0.079	0.077	0.067	0.033
200°C	0.117	0.095	0.085	0.040
300°C	0.156	0.118	0.107	0.048
400°C	0.197	0.146	0.134	0.061
450°C	0.218	0.162	0.149	0.070
500°C	0.239	0.179	0.165	0.082

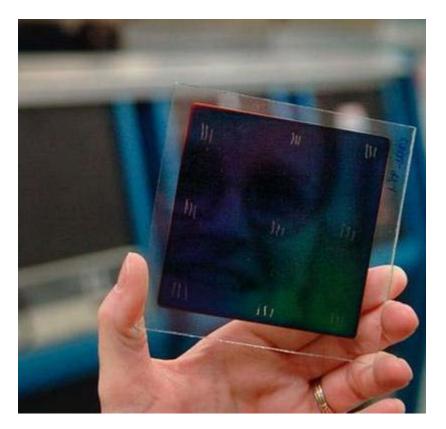
Thermal Losses for NREL Modeled Coating



- Research and development of advanced solar selective coatings
- Work with NREL Technology Transfer Office to identify U.S. industry partners to rapidly commercialize NREL improved solar selective coating

Receiver Research: Deposition Facilities

Three-Chamber In-Line System


- Load-Lock Chamber
- Pulsed DC Sputtering Chamber
 - 3 linear arrays of 5 1.5" Mini-mak guns
 - 2 12" planar cathodes
 - Codeposition
- Electron-Beam/IBAD Chamber
 - 6 multi-pocket e-beam source
 - Co-deposition bottom plate
 - IBAD w/ 12" Linear Ion Gun
- System
 - 12"x12" ambient or heated substrate
 - 4 reactive gases
 - Turbo molecular drag pumps
 - 2x10⁻⁸ torr
 - Monitoring
 - RGA
 - Quartz Crystal Monitor
 - OES
 - IRESS
 - Pressure/Gas
 - DAQ
 - Computer

β-version Prototype Absorber Development

Codeposited individual layers and modeled coating

- Proof-of-concept development used Ebeam/IBAD chamber because of cost and flexibility
- Deposited α–version prototype by ebeam from compounds sequentially (because of cost)
- Deposited β-version prototype by elemental e-beam codeposition
 - Upgraded e-beam system to codeposition
 - Deposited individual layers
 - Deposited modeled structure
 - Characterized properties
- Optical performance lower than modeled but extremely encouraging despite known errors in:
 - Thickness
 - Composition
 - Measurement

•Major FY 2008 Accomplishments:

–Deposited β -version of modeled solar selective coating with ϵ > 0.07, α > 95%, T_{stable} > 500°C

–Filed for patent (11/07)

-Competitive bid for partner (1/08) to rapidly commercialize NREL coating

-Selected partner (5/08)

–Negotiating CRADA and negotiating license agreement (started 6/08)

–Specified & ordered equipment for upgrade of cosputtering and process & control

Issues:

-CRADA signing waiting for CRADA partner and DOE to finalize negotiation of one term of CRADA document

-Equipment delivery delays

•Support CRADA to rapidly commercialize NREL advanced coating

-Optimize sputtering parameters on stainless steel coupons at NREL (FY 2009)

•Upgrade sputter chamber on NREL deposition system

- -Dual cathode pulsed DC reactive cosputtering
- -Automate process & control
- Optimize coating by reactive cosputtering
 - -Iteratively deposit optimized coating by sputtering
 - -Iteratively characterize and evaluate optical, thermal, and material properties

 Optimize phase formation from Pretorius effective heat of formation model using differential scanning calorimetry (DSC)/thermogravimetric analysis (TGA) data

•Evaluate deposited coating vs. modeled and perform economic analysis

–Scale-up to pilot production run (FY 2009 - 1st Qtr FY 2010)

• Optimize sputtering parameters on full-size stainless steel tubes on commercial production equipment (single tube at a time)

-Iteratively deposit coating with optimized sputtering conditions

-Iteratively characterize & evaluate optical, thermal, material properties of tubes

•Construct receiver tube with evacuated AR glass

-Iteratively evaluate receiver tubes

•Evaluate deposited coating vs. modeled and perform economic analysis

–Limited quantity series run – exact manufacturing specifications (2nd Qtr FY10)

at least 100 tubes (quantity TBD depends on field test site - possibly 1 loop)

-Field testing (FY2010 - FY2011)

•Convert multilayer structure to cermet and deposit resulting cermet architecture

•Examine improved solar selective coatings:

-Explore potential higher-temperature thin-film material systems

- Ashby-type diagrams of potential higher temperature material systems
- -Explore feasibility of candidate improved materials:
 - Hydrogen barrier coatings
 - Higher-temperature stainless steel substrates compatible with storage
 - •AR layers for glass envelope
 - Getters

-Explore lower-cost deposition methods that still provide high optical and thermal stability properties

-Tune coatings for power towers and CLFR applications

Issues:

- -Some work only partially funded while on continuing resolution
- -Need to hire additional staff