Solar Energy Technologies Program Peer Review

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

High Efficiency XR-700 Concentrator Photovoltaic System 2010/01/201110

Mark Ventura, Deputy Program Manager Organization: The Boeing Company Contact Info: Date: May 26, 2010

Program Team: PV

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: July 2007 ۲
- Project end date: Dec 2010
- Percent complete: 90%

Budget

- Total project funding
 - DOE share: \$19.6 M
 - Contractor share: \$26.3 M
- FY09 Funding Received
 - DOE: \$4.67 M
 - Contractor: \$13.26 M
- FY10 Funding Received
 - DOE: \$ 5.01 M
 - Contractor: \$\$8.83 M

Barriers

Modules

- Material Utilization & Cost
- **Design & Manufacturing Processes**
- Efficiency

Inverters & Other BOS

- Inverter Reliability
- **BOS Cost & Installation Efficiency**

Solar Cell Design & Mfg **Optical Design & Mfg Inverter Design & Mfg**

Commercialization Partners

Develop a new concentrating photovoltaic (CPV) system incorporating high-efficiency multi-junction cells and non imaging optics for the utility-scale PV power market.

- Advance production solar cells technology & cost reduction
 - Drive efficiency from 36% to 40% by 2010 and to 45% by 2015
 - Realize >2x reduction in cost
 - Increase production capacity to 1 GW/year by 2015.
- Implement advanced high concentration non-imaging optical system
- Advance reliability and cost of the tracker system and balance of plant
- Achieve Grid Parity \$0.15/kWh LCOE by 2010 and \$0.07/\$kWh by 2015

May 09- May 10 Key Objectives

- Demonstrate 40% production cells & cost roadmap production automation
- Partner with U.S. company to enable manufacturing scale-up & commercialization
- Demonstrate Proof of Design outdoor exposure performance stability for first year
- Improve module efficiency & demonstrate with Proof of Manufacturing production
- Demonstrate process & cost down via pilot production using robotic assembly line
- Demonstrate BOS installation and cost via 100 kW power plant deployment

SETP Develops Key Technologies Enabling Scale-up & Low Cost

Energy Efficiency & Renewable Energy

Solar Cells and Receivers

- ✓ Efficiency improvements
- \checkmark Production scale-up and automation

Optics

- Advanced design reduces pointing accuracy requirements
- Lower cost of all associated system components required for accurate tracking

Inverter

- ✓ Deployed 260kW product to PV market
- ✓ Improved reliability reduces O&M costs

Solar Array Assemblies

- ✓ Design for automated robotic manufacturing
- Single piece array assembly eliminates field alignment, reduces field installation cost

Tracker

- ✓ Design integration/ parts reduction lowers cost
- ✓ Automatic calibration to cancel sun pointing errors

Boeing & DOE Developing Utility Class Solar Based on Concentrated Photovoltaic Technology (CPV)

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Boeing & DOE High Efficiency Concentrated Photovoltaic Array

- Power: 3.4 kW (Net-AC)/array
- Power: 158.4 W (DC)/module
- 24 modules per array
- Factory aligned panel lowers field installation costs
- Low cost dual axis tracker system

CPV Solar Module

Off-axis non imaging optics design

6 High Efficiency Solar Cells Control heat pipes

6 Primary Mirror & Secondary Optic Pairs

- Features;
 - > 750 Suns Concentration
 - High Efficiency > 40% Cell; >30% Module
 - Negligible O&M
 - Air cooled (No Water required)

Spectrolab Cell Production Efficiency

Energy Efficiency & Renewable Energy

Program Goals and Achievements

- Improve average production cell efficiency from 36.5% to 40%
- Reduce cost by >50%
- Demonstrate reliability through qualification tests and field trials

The Spectrolab Technology Pathway Partnership program delivers lower cost, higher efficiency and proven reliability to the CPV industry

Improvements in Factory Automation

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Spectrolab steady progress in cost reduction through automation

- New MOVPE reactors offering larger capacity per run, more automated operation, finer control of
 process variables, shorter cycle time, and reduced material usage
- Fully automated wafer-level test offering flexible test capability for cells of any size
 - Cells sorted into matched performance bins via an electronic map delivered with the wafer.
- Automated dicing saws
- Automated pick & place for parts removal from saw dice tape
 - Capable of sorting into bins from wafer test map
- Automated bare cell tester capable of dark IV, light IV and FBIR testing and sorting of cells
 - Automated welding of cell interconnects

8 | Solar Energy Technologies Program

CPV Technology Licensed to SES for Commercial Deployment

Boeing CPV Technology Licensed to Stirling Energy Systems

- - 2010 Cost reductions in 2010
 - 2011 Low volume production (1-2MWp)
 - 2012 High volume production
- Boeing drive product & technology evolution
- SES / Tessera drive commercialization
 - Provide demand pipeline for CPV
 - Provide high volume supply chain expertise
 - Exploit synergies with SunCatcher

"This venture with Boeing represents an ideal opportunity for SES to extend our reach into the solar market for future technology deployments with a product that shares many of the SunCatcher's key differentiating features – scalability, low water use and high efficiency," said SES CEO Steve Cowman...

ENERGY Energy Efficiency & Renewable Energy

Module Design & Efficiency Improvements

- Panel Performance Stability Good
 - **5/2009 5/2010**
 - <0.1% degradation in power</p>
- Module Design Improvements
 - Performance and Cost
 - Production cell efficiency 38.5%
 - Optics manufacturing and coatings improvements yield higher efficiency
 - Pilot line robotic assembly yields highly repeatable alignment
 - 3500 W average Array power predicted for 100 KW demo

Industry leading performance achievements and outdoor exposure stability paving cost and reliability road to commercialization

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Low Volume Pilot Production Demonstration

Energy Efficiency & Renewable Energy

- Final design, installation, and automation validation completed this year
- Full Production of 32 panels in progress (4/26 through 6/14)

Pilot production demonstration validates design for low cost manufacturing approach

10 | Solar Energy Technologies Program

Power Plant Construction & System Integration Demonstration

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- 100 kW Demo Site at California State **University Northridge (CSUN))**
 - **Design & Infrastructure Improvements** Complete 5/23/10
 - All equipment fabricated and on site
 - Panel installation underway (5/11 through 6/18)
 - **Network and Field Monitoring Software** and Hardware in place
 - Utility connection agreements with LADWP in place
- **Inverter Commercial Production**, Certification, and CPV field Demo
 - **PVPowered 260 kW Inverter Commercial Production, UL1741 Cert, CEC** listed
- Low Cost Tracker Architecture, **Development, and Design is complete** and in deployment
 - High acceptance angle optics permits elegant low cost Boeing tracker design and integration
 - Open loop architecture puts the control at the array, status reported back to central data system

Underground Utilities install

Inverter

University Collaborations

ENERGY Energy Efficiency & Renewable Energy

CSUN 100KW CPV Control Room Display

Leverages CSUN unique interest in advanced alternative power

- Complements CSUN PV, fuel cells, and CO2 capture projects
- Real time control room
 - Data from each of the array
 - Site instruments (weather and wind etc.)
 - Inverter Data
 - Provides a historical data base
 - Verifies system performance

CU roof top tracker project

3 year collaboration with Colorado University, Boulder Professor Frank Kreith.

• 2010 Prototype built and operated

UCI & CSUN tracker studies

- UCI ground based 2 axis tracker
- CSUN ground based tracker

Future Research enables roadmap to grid parity by 2015

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- Solar cell efficiency-Driving towards 50%
- Manufacturing processes- mirrors, coatings, high volume assembly systems

Next generation optical architectures

- Next generation module & tracker
- Reliability testing
- BOS optimization
- Wind tunnel testing / load reduction
- Structural code interpretation & standardization

Future DOE R&D enables U.S. to maintain leadership in CPV & PV Technology

Performance Metric or property	ltem	Status in FY09	Result in FY10	Notes
Production Efficiency	Solar Cell	38.5%	38.5%	40% by Dec '10
Output Power	Array	2.7 kW dc One POD Array	3.5 kW dc (avg) 32 POM Arrays	
Robotic Assembly	Modules & Panels	Preliminary Design	Pilot Line Validated	
System Deployment	Power Plant	Site Secured, Preliminary Design	100 kW Demo Plant Deployment	
Commercialization	CPV System	Soliciting Deployment Partner	SES partnership	
LCOE	System	Credible Cost Down Roadmap to meet 2015 \$0.07/kWh objective	Partnering to execute business plan to meet 2015 \$0.07/kWh objective	

DOE's R&D Successfully Enabling CPV Technology to Achieve Grid Parity by 2015

Thank You

Energy Efficiency & Renewable Energy

