Solar Energy Technologies Program Peer Review

Reducing the Cost of Thermal Energy Storage (TES) for Parabolic Trough Solar Power Plants

Program Team - CSP

Presenter: Brian Luptowski

Organization: *ABENGOA*

Contact Info: brian imptovski@solar.abengoa.com

Date: May 25th, 2010

Overview

Timeline

- Project Start Date: February 24, 2009
- Project End Date (Phase 1): July 31, 2010
- 88% Percent complete (Phase 1)

Budget

Total project funding

	DOE Share	Contractor Share	Total
Phase 1	\$499,566	\$125,388	\$624,954
Phase 2	TBD	TBD	TBD
Phase 3	TBD	TBD	TBD

- Funding received in FY09 (DOE Share) -\$138,266.67
- Funding for FY10 (DOE Share) -\$672,000.00

Barriers Addressed

- Capital Cost
- Performance
- Technology Risk

Partners

- Project lead Abengoa Solar Inc.
- Interactions/collaborations –
 Abener Engineering and Construction Services, LLC

Challenges, Barriers or Problems Addressed

Capital Cost

- One of the Solar Program goals is to reduce the cost of thermal energy storage to \$15/kWh_{thermal}
- Capital cost of storage could be reduced with new concepts

Performance

- Thermal energy storage (TES) is a key performance advantage of CSP
- TES enables increased annual energy production
- TES improves dispatchability

Technology Risk

 Field testing will be conducted to prove technologies and reduce uncertainty

Relevance

- Task 1.1: Development of Baseline Plant Design
 - Develop a performance model of a plant in TRNSYS
 - Assess capital and O&M costs for baseline plant
- Task 1.2: Preliminary Assessment of Alternative TES Concepts
 - Identify capital and O&M costs, performance, reliability, and risks of the following concepts...
 - Advanced molten salt indirect TES system
 - CO2 working fluid and packed bed TES system
 - Concrete TES system
 - Phase change material
 - Packed bed thermocline
 - CO2 working fluid and molten salt TES system
 - Molten salt as heat transfer fluid and direct TES system
 - Other TES options
 - Compare TES concepts and select 3 for more detailed analysis

Relevance (cont.)

- Tasks 1.3-1.5: Conceptual Design of Three TES Concepts
 - Develop a TES system performance model in TRNSYS and integrate with plant
 - Analyze TES performance
 - Assess capital and O&M costs for TES concept
 - Determine technology issues and risks
- Task 1.6: Economic Assessment
 - Calculate the levelized cost of energy for each concept
 - Rank the TES concepts
 - Select 2 most promising concepts for further study in Phase 2
- Task 1.7: Component and System Development Requirements
 - Assess the component and system development requirements for 2 concepts selected for Phase 2
- Task 1.8: Phase 1 Report and Phase 2 Decision
 - Determine whether Go/No Go criteria is met to warrant further research

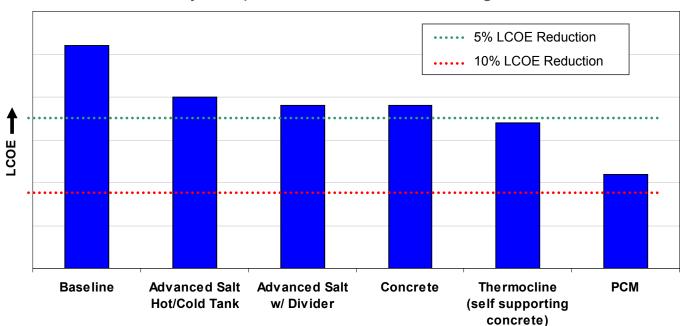
Approach

- Task 1.1: Development of Baseline Plant Design
 - Develop advanced simulation tools in TRNSYS which integrate all plant systems to accurately predict hour-by-hour plant performance
 - Contract an experienced EPC company to create detailed cost estimates
- Task 1.2: Preliminary Assessment of Alternative TES Concepts
 - Develop design models for each alternative and used to size each alternative
 - Contract an experienced EPC company to provide guidance creating rough cost estimates
 - Document possible reliability and risk issues
- Tasks 1.3-1.5: Conceptual Design of Three TES Concepts
 - Develop model of TES system in TRNSYS and integrate with all plant systems to accurately predict hour-by-hour plant and TES performance
 - Study simulation results to understand performance
 - Contract an experienced EPC company to create detailed cost estimates
 - Update possible reliability and risk issues

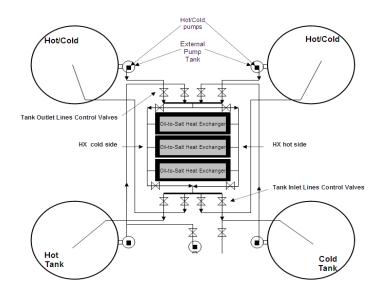
Approach (cont.)

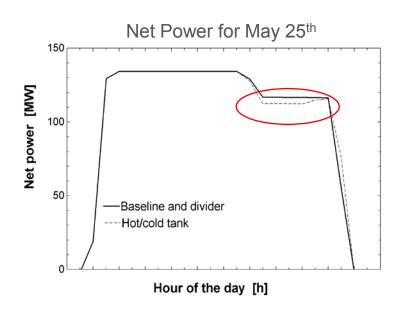
- Task 1.6: Engineering Assessment of Molten Salt Plant
 - Compare plant's levelized cost of energy to rank and select 2 best TES concepts
- Task 1.7: Component and System Development Requirements
 - Select components and issues requiring testing in Phase 2

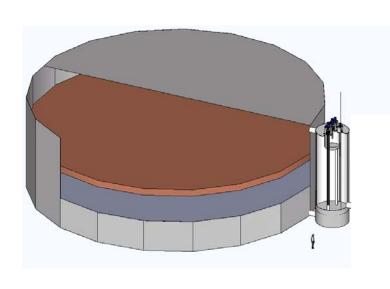
- Task 1.1: Development of Baseline Plant Design
 - Baseline plant selected to be current technology
 - Location: Phoenix, Arizona
 - Size: 140MWe_gross plant
 - Power Cycle: Superheated steam Rankine cycle with reheat
 - Cooling: Wet
 - Field HTF: Therminol VP-1
 - Field Supply: 393 °C (nominal)
 - Field Return: 293 °C (nominal)
 - Collectors: 5.7m aperture
 - Field: "H" configuration, 440 loops
 - Storage: 6 equivalent full load hours, 2-tank indirect
 - Storage Fluid: Binary salt (60% NaNO3, 40%KNO3)
 - Updates/improvements made to integrated, transient plant model in TRNSYS

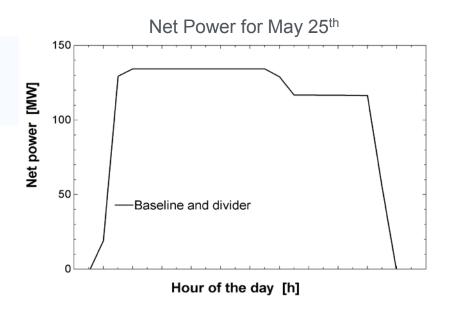


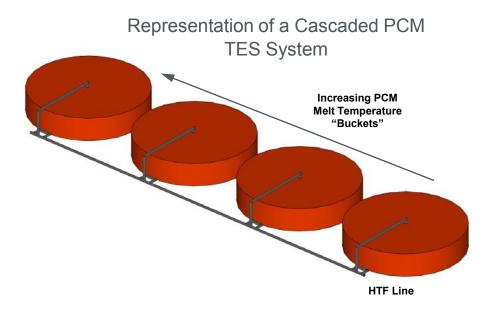
- Task 1.2: Preliminary Assessment of Alternative TES Concepts
 - Maximum LCOE reduction possible due only to TES = 17% (assumes a TES capital cost of \$0, but 6 hours of storage)
 - Molten salt HTF with direct TES system was deferred to other DOE project (GO18038)
 - Initially the cost/kWhthermal of storage capacity was compared with baseline
 - CO2 concepts eliminated based cost associated with pressure vessels
 - Steam TES eliminated based on cost associated with pressure vessels and natural gas requirement
 - Oil based thermocline eliminated based cost associated with pressure vessels
 - LCOE calculated for remaining concepts (see next slide)

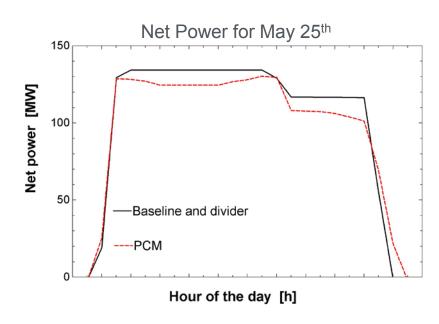

- Task 1.2: Preliminary Assessment of Alternative TES Concepts (cont.)
 - 3 Concepts selected...
 - Advanced Molten Salt Indirect TES (2 variations)
 - Concrete TES
 - Phase Change Material TES
 - Note: Thermocline with self-supporting concrete bed and molten salt deferred to other DOE project (GO18038)


Preliminary Comparison to Baseline TES using LCOE

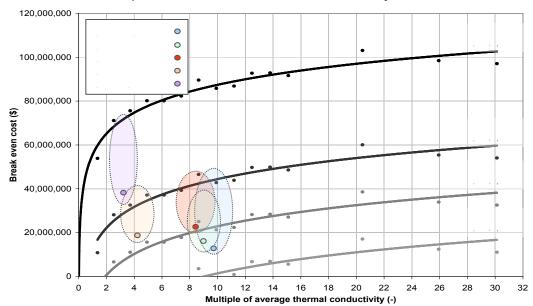

- Task 1.3: Conceptual Design of Advanced Molten Salt Indirect TES
 - Hot/Cold Tank (see figure)
 - Requires 4 tanks vs. 6 tanks for the baseline
 - Performance model developed and integrated into plant model
 - ISSUE: Heal Damping reduces performance from TES and requires over-sizing
 - ISSUE: Partial Charge/Discharge limitations reduce annual energy produced from storage
 - ISSUE: Foundation Thermal Shock increases risk

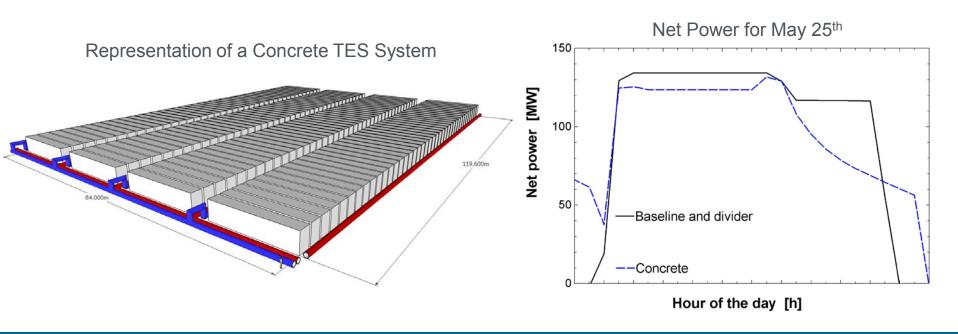



- Task 1.3: Conceptual Design of Advanced Molten Salt Indirect TES (cont.)
 - Tank w/ Divider (see figure)
 - Requires 3 tanks vs. 6 tanks for the baseline
 - Performance model developed and integrated into plant model
 - Performance similar to baseline
 - ISSUE: Buoyant Divider poses increase risk and cost/tanks



- Task 1.4: Conceptual Design of Phase Change Material TES
 - Originally implemented as a shell and tube cascaded system
 - Performance model developed and integrated into plant model
 - ISSUE: Low Conductivity of PCM reduces daily performance
 - ISSUE: Large Number of Pipes required in PCM "buckets" drastically increases HTF volume in plant by over 2X
 - ISSUE: Partial Charge/Discharge limitations reduce annual energy produced from storage
 - <u>ISSUE: Performance Variations In Buckets</u> due to PCM property differences reduces performance and increases material requirements




- Task 1.4: Conceptual Design of Phase Change Material TES (cont.)
 - Solutions proposed and currently under investigation to above issues
 - Re-optimized buckets allowing for geometry variation from bucket to bucket to reduce performance variation
 - Investigating replacing HTF tubes with plate design to reduce HTF volume
 - Investigating cost requirements on PCM conductivity enhancement methods
 - Investigating benefits of control over bucket melt temperature and distribution in cascade
 - Investigating PCM encapsulation as a way to improve heat transfer with PCM and increase utilization of PCM material
 - Investigating controls changes to improve performance

- Task 1.5: Conceptual Design of Concrete TES
 - Based on concrete modules with embedded HTF piping matrix
 - Performance model developed and integrated into plant model
 - ISSUE: Low Conductivity of concrete drastically reduces daily performance
 - ISSUE: Large Number of Pipes required in concrete modules drastically increases total plant HTF volume by almost 3X
 - ISSUE: Partial Charge/Discharge limitations reduce annual energy produced from storage

- Task 1.6: Economic Assessment
 - Engineering, procurement, and construction (EPC) cost developed by Abener
 - Theoretical maximum LCOE reduction <u>due to TES</u> ~ 17%
 - New metric proposed for TES comparison captures performance of TES integrated into a plant (TES Cost/Performance Quotient)

TES
Cost/Performance = EPC Cost of TES (\$)

Net Annual Electricity
from TES (kWh_{e_net(annual)})

	Adv. Salt (Hot/Cold)	Adv. Salt (Divider)	PCM	Concrete
LCOE (% change from baseline)	1.6%	2.1%	7.0%	11.9%
TES Cost/Performance Quotient (% change from baseline)	3.5%	7.0%	30.0%	25.4%

Budget Status and Potential for Expansion

•	Total project funding		DOE Contractor Share Share		Total
		Phase 1	\$499,566	\$125,388	\$624,954
		Phase 2	TBD	TBD	TBD
		Phase 3	TBD	TBD	TBD

- Funding received in FY09 (DOE Share) \$138,266.67
- Phase 1 on budget*
- Phase 1 is behind schedule due to limited CSP experience in labor pool delaying staff increases
- No cut in scope as occurred
- Potential for Expansion a broader range of PCM configurations could be investigated
- Potential for Expansion application of PCM based storage for direct steam generation (details on next slide)

^{*} pending approval of expense rates

Future Plans (FY 2011 and beyond)

- Critical Milestone Go/No Go decision to proceed to Phase 2
 - Present a complete conceptual design, analysis and comparison of alternatives
- Phase 2 Further Evaluation of 2 Concepts
 - Task 2.1: Component Development
 - Task 2.2: Fluid and Thermal Computational Analysis
 - Task 2.3: Integrated Model
 - Task 2.4: Component Testing
 - Task 2.5: Performance and Economic Analysis
- Phase 2 Scope Increase: Analysis of PCM TES for Direct Steam Generation using simulation tools and EPC estimates
 - PCM TES thermodynamic behavior is well adapted to DSG applications
 - Abengoa has a trough DSG facility operating in Spain for technology development
 - Offers increased leveraging of DOE funds to solve storage challenges for CSP

Future Plans (FY 2011 and beyond) (cont.)

- Critical Milestone Go/No Go decision to proceed to Phase 3
 - Demonstration of technical and economical feasibility of TES alternatives, as well as reliability of developed components.
- Phase 3 Field Demonstration of 2 Concepts
 - Task 3.1: Development of a System Final Design
 - Task 3.2: Equipment Procurement
 - Task 3.3: System Installation
 - Task 3.4: System Start-up and Checkout
 - Task 3.5: Operational Testing
 - Task 3.6: Phase 2 Report

Collaborations

- Abengoa Solar Inc.
 - Project Lead, industry
- Abener Engineering and Construction Services, LLC
 - Contractor, industry
 - Providing detailed engineering, procurement, and construction cost estimates for the plant concepts

Mandatory Summary Slide

- CO₂, steam, and concrete TES concepts not competitive with baseline
- TES cost reduction limited using liquid molten salt for sensible storage
- Baseline TES performance difficult to achieve with new concepts
- Storage medium can be less than 50% of total TES cost
- Integration into plant and annual performance must be considered when evaluating TES concept potential benefits
- Theoretical maximum LCOE reduction <u>due to TES</u> ~ 17%
- New metric proposed for TES comparison captures performance of TES integrated into a plant (TES Cost/Performance Quotient)
- Potential for 30% TES Cost/Performance Quotient reduction (7% LCOE reduction)
- PCM TES is also applicable to DSG trough technology