Solar Energy Technologies Program Peer Review

U.S. DEPARTMENT OF ENERGY

Energy Efficiency & Renewable Energy

GOAL: Development of a low cost layer, which will down-convert high energy solar photons to useful low energy photons, with high efficiency

Efficiency Enhancing Layers for Photovoltaic Modules

Program Team – PV DE-EE0000568 Loucas Tsakalakos Alok Srivastava GE Global Research tsakalakos@ge.com; srivastava@crd.ge.com May 25, 2010

Overview

Energy Efficiency & Renewable Energy

Timeline

- Project start date: 8/1/2009
- Project end date: 7/31/2011
- Percent complete: 38%

Budget

- Total project funding: \$2.4M
 - DOE share: 50%
 - GE cost share: 50%
- Funding received in FY09
 - \$125,069
- Funding for FY10

Barriers

- Efficiency:
 - >5% relative gain
- Design & Packaging
 - New coatings
- Manufacturing:
 - deployment on large-scale modules

Partners

- Rensselaer Polytechnic Institute
 - Next generation PV and optics model
- University of Georgia
 - Down conversion optical characterization

- Efficiency
 - Today's thin film PV modules limited in efficiency
 - Use down-shifting (DS) layers to boost efficiency of virtually any PV module
- Design of modules
 - DS layers allow greater flexibility in design of PV modules
- Manufacturing
 - Low cost DS layers allow for easy integration into the manufacturing process of any PV module

Impact

- Increased PV deployment in US
- US based PV module manufacturing

There are various pathways to high efficiency:

- Multijunction solar cells
 - In production (high cost)
- Multiple absorption path solar cells (impact ionization, multiple exciton generation)
- Multiple energy level solar cells (localized levels or intermediate bands)
- Multiple temperature solar cells (utilization of hot carriers)
- Dilute II-VI oxide semiconductor cells (ZnMnOTe)
- Solar Thermophotovoltaics (TPX)

⇒ Our approach: Down conversion of photons for Multiple spectrum solar cells

- All these approaches have theoretical efficiency limits > 31%
- Many technical challenges that require fundamental scientific research
- Up/down conversion most practical approach today for boosting efficiency of terrestrial flat-plate PV

Relevance: Increase PV Efficiency

•2 fundamental efficiency loss mechanisms in solar cells:

•High energy (short wavelength) photons: thermalization

- •Low energy: transmission
- •Thin film cells:

•Absorption loss in window layers

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Thin film solar cells [Gupta, et al., MRS (2001)]

Approach

ENERGY Energy Efficiency & Renewable Energy

Convert high energy light to useful lower energy light

- Photoluminescent/down-converting converting layers can be applied to front of a standard solar cell without significant modification in the process
- · Increases efficiency with minimal capital expenditure and cost

•Potential for < \$5/m2

• Can also be applied at module level

Functional Layers on PV Modules

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- PL and down-conversion
 - 0.5-8% absolute efficiency gain
 - thin film PV modules with PCE >15%
- Scalable, low-cost processes (<\$0.05/W)
- Gain demonstration on cells and mini-modules
- Go/No-Go Metrics
 - Design with > 1% gain
 - DS materials with high QE (>70%)
 - DS Films with high QE (> 40%)
 - Process flow for scalable integration

imagination at work

Task 1 - Modeling

Modeling Approach

Energy Efficiency & Renewable Energy

• Entitlement

- Module QE and solar spectrum (AM1.5G)
- DS film excitation and emission spectra
- Calculate modified solar spectrum
- Optical modeling
 - Thin film (ray tracing)
 - Radiative transport theory

U.S. DEPARTMENT OF

Summary of Modeling Results

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- Gain calculated for various PV technologies (thin film, Si) technologies
 - Assumed idealized (box-like) excitation and emission spectra
 - Assumed QE of 0.85
 - Gain as high as 12% possible (DS)
 - Higher gain for DC/QS
- Gain depends strongly on DS film parameters
- Calculated light collection factor
 - Higher than 50%
- Evaluated gain for over 30 GE compositions
 - Down-selected to 2 leading materials systems
- Established thickness range and optical losses using optical model

wavelength (nm)

imagination at work

Novel optical designs (RPI)

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

why not change the world?"

• Working with RPI to develop novel module-level optical designs that incorporate efficiency enhancing layers

imagination at work

Task 2 – Down Shifting Materials

DS Materials Synthesis

- Fabricated DS materials with
 - well separated excitation and emission
 - Highly crystalline with minimal second phases
- Optical properties
 - Quantum efficiency ~ 90%
 - Absorption(@490 nm) =75%

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Down-conversion/quantum splitting (UGA)

ENERGY Energy Efficiency & Renewable Energy

• This result validates the team's approach and gives direct experimental evidence of the "two-for-one" downconversion process.

Task 3 – Down Shifting Films

Processed DS Films

Energy Efficiency & Renewable Energy

- Fabricated DS films with improved morphology using manufacturable process
- Performed detailed analysis of potential low-cost processes

(ge

DS Film Excitation/Emission Spectra

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Measured excitation/ emission spectra from DS films using integrating sphere

Image tion of the liminary QE values low – addressing via analysis and optimization

Long Wavelength Optical Loss

• DS films show promising optical transmission relative to controls

(ge)

imagination at work

Task 4 – DSF Integration with PV Modules

Preliminary DS Film Data

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

	Jsc	Efficiency
Baseline	2.32E-02	11.9957
Process 1 – top	2.23E-02	11.4354
Process 1 - bottom	2.36E-02	11.7809
Process 2 - top	1.60E-02	8.3151
Process 2 - bottom	1.92E-02	9.9604

- Pre-award work
- Showed less-than-expected reductions in PV efficiency
- Suggested there is a path to improved efficiency

GE

Thin Film Solar Cell Testing

- Task 1:
 - iterative design with input from experimental results
- Task 2:
 - Optimization of leading DS materials system
 - Pursue demonstration of DC materials system with broadband excitation
- Task 3:
 - Improve QE of DS films to > 40% (*Key Go-No Go Metric*)
- Task 4:
 - Develop process flow for integration with PV modules (*Key Go-No Go Metric*)
 - Demonstrate gain on solar cells and mini-modules

Collaborations

- Rennselaer Polytechnic Institute
 - Relationship: sub
 - University
 - Within the DOE Solar Program
 - Monthly meetings
- University of Georgia
 - Relationship: sub
 - University
 - Within the DOE Solar Program
 - Monthly meetings, exchange of samples and data

- Modeled DS film impact on multiple PV technologies
- Showed designs with > 10% relative gain
- Evaluated over 30 DS compositions and down-selected to 2 leading materials
- Model shows practical thickness of 2-50 μm
- Fabricated DS materials with >90 QE
- Demonstrated quantum splitting mechanism with excitation energies applicable to the solar spectrum
- Fabricated prototype DS films using manufacturable processes and measured excitation/emission
- DS films show promising optical properties
- Demonstrated DS films do not reduce efficiency of thin film solar cells
 - Net gain expected with subsequent optimization

Summary Table

Performance Metric or property	Prototype/ Component /Material	Status in FY09	Result in FY10	Notes
Design > 1% absolute	Model	-	>1% design shown	Requires advance optics
DS QE > 70%	Material	_	>90% demonstrated	Relative to a standard
DS film QE >40%	Component	-	<20%	Optimizing DS film structure
PV cell efficiency > 5% relative	Prototype	_	0%	Losses equal gains; optimizing DS films

Y. Andrew Xi, David Smith, Sergiy Zalyubovskiy, Holly Comanzo, Bob Lyons, John Nink, Svetlana Rogojevic, Joleyn Balch, Peter Bonitatibus, Peter Codella, Bob Cleaver, Josh Salisbury, Susanne Lee, Ching-Yeu Wei, Oleg Sulima, Asha Bhat, James Elson

Danielle Merfeld, Kelly Fletcher, Jim LeBlanc, Jerry Trant, Paul Diconza, John Freer, Bob Shalvoy, Tom McNulty

Partha Dutta

Uwe Happek

