U.S. DEPARTMENT OF

High Efficiency, Low-Cost, Multijunction Solar Cells Based on Epitaxial Liftoff and Wafer Bonding

"This presentation does not contain any proprietary, confidential, or otherwise restricted information"

Pre-Incubator Photovoltaics: Long Term

Rao Tatavarti

MicroLink Devices Inc rtatavarti@mldevices.com 25th May, 2010

Overview

Timeline

- Project start date: 29 March 2010
- Project end date : 29 March 2011
- Percent complete: 10%

Budget

- Total project funding
 - DOE share: \$500k
 - Contractor share: \$125k
- Funding received in FY09: \$0
- Funding for FY10: \$100k

Barriers

U.S. DEPARTMENT OF

- Barriers addressed
 - Material Utilization & Cost
 - Efficiency
 - Manufacturing Processes

Partners

- Interactions/ collaborations: UCLA
- Project lead: Prof. Mark Goorsky

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- This pre-incubator addresses the challenge of making concentrated photovoltaic (CPV) systems cost-competitive and reliable
- The technical barriers addressed are
 - Manufacturing cost reduction
 - Module cost reduction
 - Reliability improvement
- This program address the SETP mission to make solar power cost-competitive with conventional electricity sources by 2015 by providing low-cost, higher-efficiency solar cells for CPV systems applications

Increased cell efficiency \rightarrow Reduced solar power cost (kWh)

- The objective of this pre-incubator program is to develop new solar cell manufacturing technology by combining:
 - Epitaxial liftoff technology
 - Wafer bonding
- This approach will address the following technical barriers:
 - Reduction of manufacturing cost of solar cells by lowering the material cost
 - Reduction of module costs of CPV systems by providing higher efficiency solar cells
 - Potential to improve the reliability of CPV systems by using solar cells made from lattice matched materials
- In this talk we will present
 - Our current baseline technology
 - New technology
 - Work performed in the past two months

Technical Approach: ELO Process

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- Grow III-V structure on substrate with release layer
- Apply flexible carrier to top of structure
- Remove release layer by chemical process
- Structure lifts off in one piece
- Transfer to temporary carrier for processing

Substrate can be reused several times to reduce cost

- Consistent with fabrication of complex structures
 - Liftoff does not damage devices
- Very thin liftoff layer everything below the grown structure removed
 - Low thermal impedance reduces operating temperature thereby increasing cell efficiency
 - Flexible use materials in new situations
 - Lightweight enables unique aeronautic and space applications
- □ Works for GaAs, InP and other III-V materials

ELO approach addresses manufacturing cost technical barrier

Technical Approach: ELO Solar Cell Process Flow

Technical Approach: ELO Solar Cells

Energy Efficiency & Renewable Energy

Flexible ELO Wafer

Processed ELO Solar Cell Wafer

ELO Solar Cells

ENERGY Energy Efficiency & Renewable Energy

GaAs single-junction cells

InGaP/GaAs dual-junction cells

High Efficiency Triple Junction Solar Cells

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Triple junction cells with >30% efficiency

*A/R: Anti-Reflective Coating

Increase number of junctions \rightarrow higher efficiency

Diagram from : R.A. Sheriff et.al, Solar Power 2006

Triple Junction ELO Solar Cells - IMM

Energy Efficiency & Renewable Energy

- IMM design involves combing materials with two different lattice constants
 - Thick graded buffer
- Higher efficiency designs need more junctions in materials with different lattice constants
- Highly dislocated buffer layers unknown reliability

Wafer Bonding Technology

13 | Solar Energy Technologies Program

http://www.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap06/left.htm

http://www.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/

Diagram source:

- Wafer bonding between dissimilar A³B⁵ materials was developed in order to have more flexibility in the design of optoelectronic components
- AIGaAs/GaP LEDs were developed at HP and are in mass production

ENERGY Energy Efficiency & Renewable Energy

Wafer Bonding

- Eliminates graded and dislocated buffers
- Mix and match lattice constants and bandgaps
- Use of lattice-matched materials improves reliability
- Wafer bonding is extensively used in IC and LED manufacturing

Eliminates graded buffers

Improves reliability

Reduces growth time

- Improves manufacturability
- Wafer reclaim reduces cell cost
- Higher efficiency can be achieved by making cell with four or more junctions
 - Higher efficiency cells reduce cost of CPV power

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Hardware baseline deliverable

- □ Three 0.5 x 0.5 cm² working triple-junction cells
- InGaP/GaAs/InGaAs IMM ELO solar cells tested under AM1.5D at one sun illumination
- Triple junction ELO cells delivered on a full 4-inch wafer

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- Cell design
 - Three junction wafer bonded solar cell based on latticematched materials grown on GaAs and InP has been developed
 - Two components:
 - A GaInP (1.88 eV) / GaAs (1.42 eV) lattice matched to GaAs
 - B GaInAsP (1.0 eV) or InGaAs (0.74 eV) lattice matched to InP
 - □ Wafer bonded cell: GaInP/GaAs/(InGaAsP or InGaAs)
 - □ Work in process to optimize MOCVD growth for design B
 - In house technology already available for design A

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Atomic Force Microscopy (AFM)

- AFM studies of InP and GaAs wafer surfaces indicated average surface roughness < 1 nm
- AFM studies of InP and GaAs epitaxial wafer surfaces indicated average surface roughness >2 nm
- Surface roughness <1 nm is necessary for successful wafer bonding

Energy Efficiency & Renewable Energy

ENERGY

AFM studies of GaAs epitaxial solar cell surfaces

1-3226-6 Dual junction inverted solar cell

Epitaxial surfaces on GaAs substrates: r.m.s 1 nm to 1.3 nm

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

AFM studies of InP epitaxial solar cell surfaces

1-3220-2 - InGaAs on InP- Center

Epitaxial surfaces on InP substrates r.m.s 2 nm to 2.5 nm

Accomplishments / Progress / Results – March 29th to 10th May 2010

Task 3: Wafer Bonding

Successful wafer bonding of semiconductor to semiconductor requires

Efficient surface activation process

Surface activation such as S-termination is essential for low temperature wafer bonding

Smooth bonding surfaces

Bonding surfaces with average surface roughness <1nm are necessary for low temperature wafer bonding

Semiconductor surface activation Semiconductor surface smoothness

Energy Efficiency & Renewable Energy

Semiconductor surface activation

- S-termination of GaAs and InP surfaces results in oxide free surfaces
 - Facilitates low temperature (<450 °C) wafer bonding</p>

□ AFM images after S-treatment:

- GaAs surface r.m.s 11 Å
- S-treatment does not increase surface roughness

U.S. DEPARTMENT OF E

Energy Efficiency & Renewable Energy

IR image of GaAs-GaAs wafer bonded sample

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

IR images of bonded InP-GaAs wafers

Sample 1

Sample 2

InP-GaAs substrate wafer bonding: 4 inch wafers

ENERGY Energy Efficiency & Renewable Energy

Reduction of InP Epitaxial surface roughness to <1nm</p>

- Wafer-bonding process to bond InP-based and GaAsbased solar cells
- Key upcoming deliverable: Sept 2010
 - Wafer bonded InGaP/GaAs/InGaAs solar cells with 25% efficiency at AM1.5, one sun illumination
- Risk mitigation path
 - Wafer fusion at higher temperatures
 - Substrate Etch

Prof. Mark Goorsky, UCLA. Wafer bonding process development And analysis

Summary

ENERGY Energy Efficiency & Renewable Energy

- Critical parameters for wafer bonding of epitaxial surfaces such as surface roughness are identified
- Wafer bonding between GaAs and GaAs substrates achieved on 4" wafers
- Wafer bonding between GaAs and InP substrates achieved on 4" wafers
- Work is in progress to achieve bonding between GaAs and InP epitaxial surfaces
- Work in progress to reduce the InP epitaxial surface roughness

Performance Metric or property	Prototype/ Component /Material	Status in FY09	Result in FY10	Notes
Eff >25% @ 1 sun, AM1.5D	Wafer bonded 0.25cm2 cell	N/A	Sept'2010- deliverable hardware	