

Solar Energy Technologies Program

Photovoltaics Subprogram

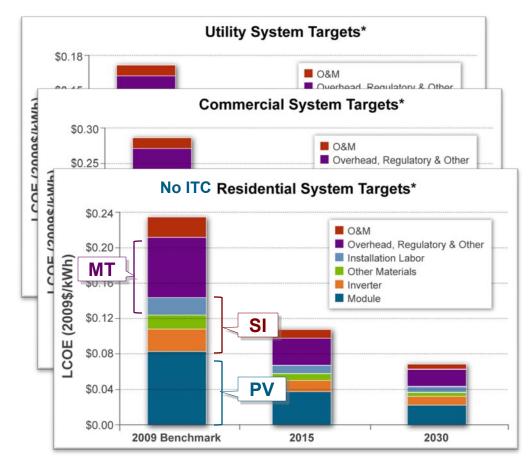
Minh Le

Chief Engineer and Acting PV Team Lead

Scott Stephens

Marie Mapes

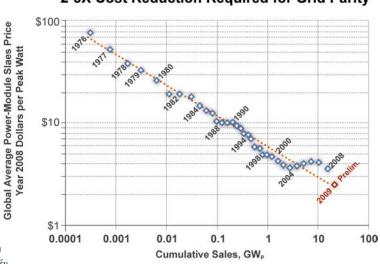
Ed Etzkorn

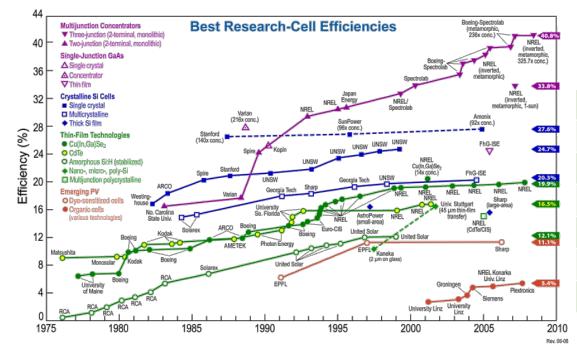

Tim Fitzsimmons

Victor Kane

Alec Bulawka

Price/cost reduction targets provide guidance for R&D focus


*Assumptions: Targets calculated using 30 year system life and solar insolation of Phoenix, AZ. For Residential PV, system is 80% financed with a 30-year fixed mortgage at 6.0% (nominal). Does not include


the 30% ITC or state, local or utility incentives.

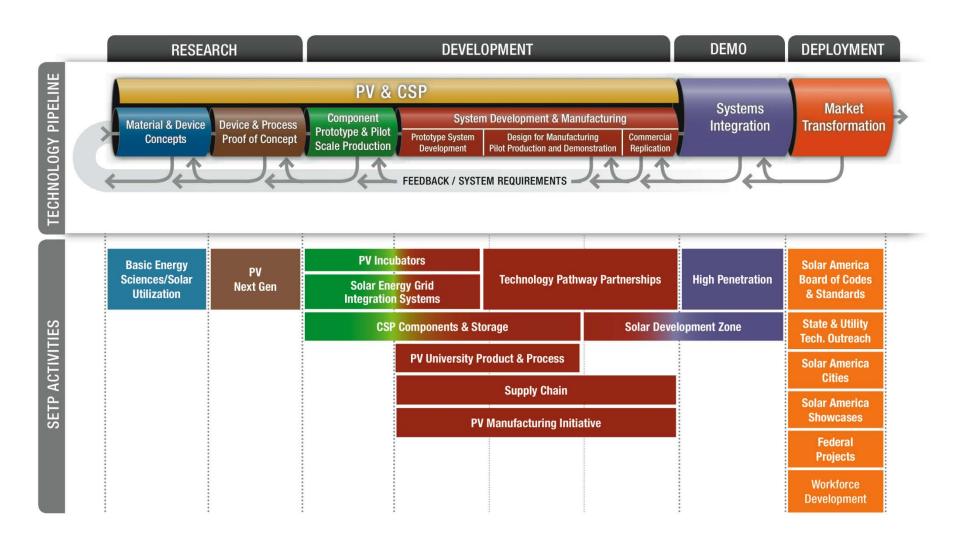
For Commercial and Utility PV, system is 60% financed with a 15-year loan at 6.0% (nominal) and 40% with equity at 15%. Includes the 10% ITC as well as 5-year MACRS depreciation, but does not include state, locar or utility incentives. Assumes the system is developer-owned, and so the levelized costs include the taxes that must be paid on the electricity generated.

- PV module prices are 30-50% of installed system cost
- PV module efficiency is a <u>significant lever</u> into the rest of the system
- BOS being addressed in PV as well as SI and MT subprograms

2-3X Cost Reduction Required for Grid Parity

	Laboratory Cell Efficiency	Best in Class Production Module	Typical Production
CPV	~40%	~30%	
c-Si	~24%	~20%	~17%
mc-Si	~20%	~17%	~14%
CIGS	~20%	~11%	~11%
CdTe	~16%	~11%	~11%
a-Si	~12%	~8%	~7%
OPV	5-8%	~4%	

Cell and Module Efficiency has been improving


Need more progress in closing the cell to module delta in thin films

Module efficiency is a major contributor to overall system costs

More efficient panels > less labor to install

SETP Programs cover all parts of the RDD&D Pipeline

Technology Maturity

CPV

Triple Junction
 IMM
 Systems

Emerging

OPV • SSC/DSSC

Thin Films

- CdTe
 CIGS/CZTS/CIS
- a-Si/nc-SiIII/V

Silicon

c-Si
 mc-Si
 Film-Si

TRL	TRL Definition
TRL 1	Basic principles observed and reported
TRL 2	Technology application formulated
TRL 3	Analytical and experimental proof of concept
TRL 4	Component validation in laboratory
TRL 5	System validation in relevant environment
TRL 6	Engineering/pilot-scale, similar (prototypical) system validation in relevant environment
TRL 7	Full-scale, similar (prototypical) system demonstrated in relevant environment
TRL 8	Actual system completed and qualified through test and demonstration.
TRL 9	Actual system operations

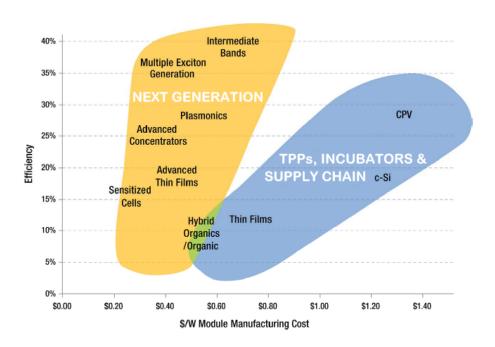
Research

Development

Deployment

- NextGen
- Seed Funds
- National Labs

Research


- Pre-Incubator
- Incubator
- Core Labs Research
- Technology Pathway Partnerships
- PV manufacturing Initiative

Early- to Mid-Stage

Next Generation

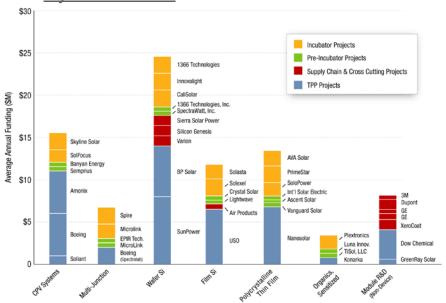
 Goal: Development of revolutionary, and highly disruptive next-generation PV technologies, expected to produce prototype PV cells and/or processes by 2020, with full commercialization by 2025-2030.

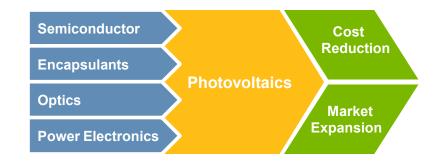
Pre-Incubator/Incubator

 Goal: Support transition of verified PV devices to prototype products and early pilot production by leveraging NREL R&D resources and mitigating risk through fixed firm pricing contracts.

Tetra Sun

Al TA Devices




Technology Pathway Partnership

 Goal: TPPs are industry-led projects that emphasize the development, testing, demonstration, validation, and interconnection of new PV components, systems, and manufacturing equipment. Clear LCOE metrics to address <u>Total</u> System Costs

Supply Chain and Cross Cutting Technologies

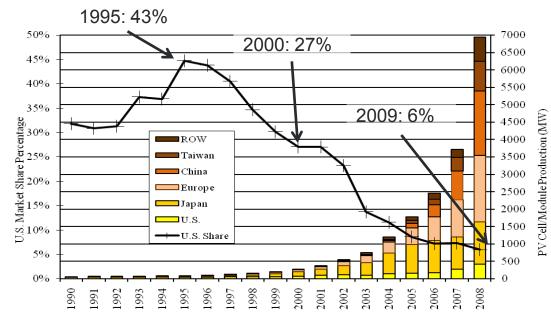
- Development of component and/or manufacturing technologies with nearterm impact on a substantial portion of the PV industry
 - Examples: processing steps to improve throughput or yield
 - Material solutions to improve reliability or enhance optical, thermal, or electrical performance
 - System components that streamline installation, or supporting diagnostic tools

National Labs Research

- Goal: Develop national labs expertise in PV aligned with industry needs
 - Establish leadership in next generation high risk/high impact technologies
 - Support industry with evaluation characterization, reliability, and resources

Major Programs:

- Research in Si, CdTe, CIGS, OPV, CPV, ...
- T&E Reliability, Testing, Regional Experiments
- M&C New characterization techniques to support science and industry
- Seed Funds and CRADAs help industry commercialize labs technology
- PDIL Rapid prototyping and advanced process development

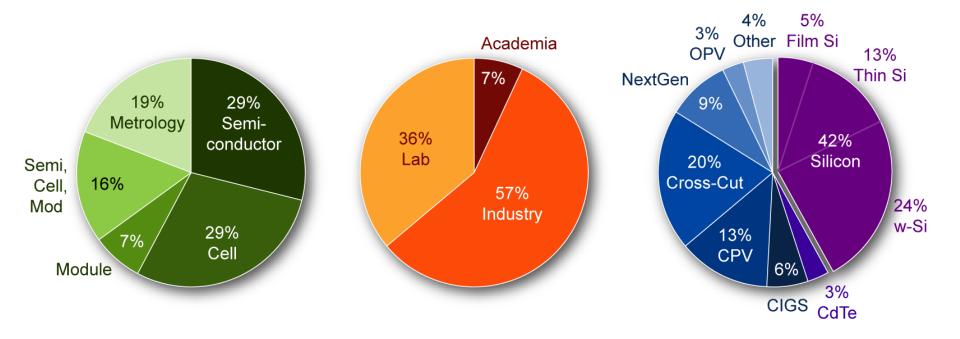

New Programs Under Development

PV Manufacturing Initiative

 Goal: Accelerate development and commercialization of PV manufacturing and process technologies by close partnerships between companies, universities and other stakeholders.

Global & U.S. annual PV module Production by region

Foundational PV


- Goal: Understand and overcome fundamental barriers to improved efficiency of commercial and near commercial semiconductors
- Sample Approaches:
 - Combinatorial techniques to rapidly screen materials and processes – Reduce time to final solution
 - Defect engineering to control defects in semiconductors to improve efficiency

Graphic courtesy of Intermolecular

SETP budget areas – PV R&D ARRA & 2010 projects (~ \$123 M)

Budget numbers above:

- contain line item projects classifiable with shown categories
- omit some Lab Support activities

Use as relative measure only

	Proposed Changes	
Next Gen	Staggered 4 year programs with 2 year stage gate. Create structure for cyclic program to develop next generation ideas and next generation of researchers.	
	Merged Pre-incubator and Incubator. To be released	
Incubator	Topic 1: Pre-Incubator	
	Topic 2: Incubator	
Foundational	New program under development to address fundamental barriers of commercial and near commercial semiconductors.	
Foundational	Topic 1: close the gap between lab and theory	
	Topic 2: close the gap between production and lab	
	Total systems approach to cost reduction. Evolution of TPP	
System Development	Topic 1: Products/Processes/Technology that make systems quicker and cheaper to install	
Collaborative	Topic 2: Module integrated power electronics	
	Topic 3: BIPV	
Supply Chain	Largely unchanged – FOA released	
PVMI	New program to support collaborative manufacturing focused R&D – FOA released	