Solar Energy Technologies Program Peer Review

Energy Efficiency & Renewable Energy

Tower Receiver Development

Concentrating Solar Power Program Team

Kris Miner

Pratt & Whitney Rocketdyne Kristan.Miner@pwr.utc.com, (818) 586-7854 May 26th, 2010

Overview

Timeline

- Project start: Oct. 2008
- Project end: Sept. 2011
- Percent complete: 30%

Budget

- Total project: \$2.88M
 - DOE share: \$1.86M
 - Contractor share: \$1.02M
- FY09: \$389K
- FY10: \$817K

Barriers

- Barriers addressed
 - Performance
 - Reliability
 - O&M cost

Partners

- Project lead: Pratt & Whitney Rocketdyne
- Interactions: Sandia Test Facility & sub-tier vendors

Capital Cost Barrier

- Technical risk was demonstrated with Solar II
 - Main barrier is overall CSP plant capital cost
- Capital cost is being addressed
 - Selecting more cost effective materials
 - Removing design complexity
 - Reduce amount of parts
- Importance of reducing the capital cost is very high
 - Make CSP competitive with traditional energy plants
 - Capital cost dominates LCOE
 - Requires less external financing
 - · Increases likelihood that CSP plants will be built

Energy Efficiency &

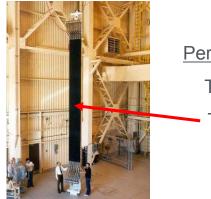
Renewable Energy

U.S. DEPARTMENT OF

ENERGY

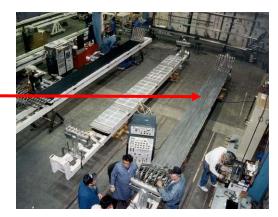
Tubes

Manufacturing



Installation

Performance Barrier


ENERGY Energy Efficiency & Renewable Energy

- Performance important to the economic viability of CSP
 - Higher performance
 - Higher energy efficiency
 - Lower LCOE
- Performance barrier addressed in Phase II design
 - Receiver designed for optimum thermal characteristics
 - Materials & coatings selected based on optimum optical characteristics
 - High absorptivity/low emissivity for sunlit regions
 - Low absorptivity/high emissivity for heat shield regions

Performance barrier Tube materials —

Tube coatings

Reliability and O&M Cost Barriers

Energy Efficiency & Renewable Energy

- Reliability and O&M costs are related
 - Addressed in the design phase
 - Designing in durability to lower frequency of O&M
- Reliability / O&M barriers evaluated during testing
 - Will be implementing and practicing on-site
 - Tube crack repairs
 - Tube replacements
 - Will be monitoring the O&M issues concerned with:
 - New header and tube designs
 - Tube coatings
 - Heat shield design & materials

U.S. DEPARTMENT OF

Reliability/O&M cost barrier Tube durability Re-application of coatings

Tube repairs/replacements

Reliability and O&M Cost Barriers (cont.)

Energy Efficiency & Renewable Energy

- Solving O&M cost issues critical to the future success of CSP
 - Understanding issues will limit plant downtime
 - Known fixes for problems will speed repair time
 - Goal is to perform O&M in a set timeframe throughout the year

Relevance

- Overall project objective:
 - Validate manufacturability of large scale receivers
 - Test receiver in prototypic on-sun conditions
 - Design for lowering the LCOE
- Objectives for the period May 09 May 10
 - Design for lowering the capital cost and lowering the O&M cost
 - Select materials for improving the reliability and lowering the O&M cost
 - Select tube coatings that improve performance and increase reliability
 - Select heat shield materials that improve reliability and lower the O&M cost

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Approach

ENERGY Energy Efficiency & Renewable Energy

- Overall technical approach
 - Review what was achieved in the past (Solar II)
 - Understand current design of large receivers
 - Understand solar operating conditions
 - Innovate design
 - Geometries
 - Materials & processes
 - Finalize design
 - Fabricate hardware
 - Test subscale receiver article
 - Evaluate data
 - Make recommendations for future designs
- Design/Build/Test addresses technical barriers by:
 - Providing opportunity to optimize the cost
 - Implementing higher performance characteristics
 - Learning from the process of build & test
 - Discover valuable information on reliability & O&M

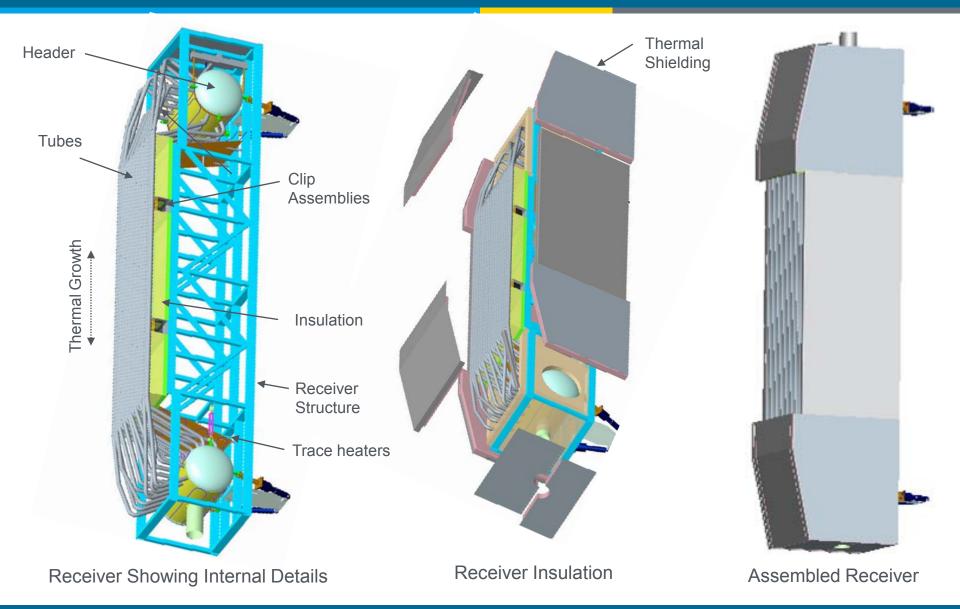
Receiver installed at Sandia

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Approach (cont.)

- Receiver project not integrated with other Solar Program research
 - Would integrate with the Baseload Concentrating Solar Power FOA
 - Assuming project was approved
 - Receiver could be utilized again
- FY10 Milestones & Go/No go decision
 - Milestone #1: Hold Critical Design Review on June 29, 2010
 - Milestone #2: Submit Phase II Report by August 31, 2010
 - Go/no go decision is scheduled for Sept 2010
 - Currently on schedule
 - Complete design
 - Design review
 - Phase II report
- FY11 Milestones
 - Finish fabrication of receiver by March 31, 2011
 - Complete testing by Sept. 30, 2011
 - Finish project report and production scenarios by Oct. 31, 2011

Accomplishments / Progress / Results


- Previous accomplishments in FY 09
 - Completed Preliminary Design Review and Phase I report
 - Received authorization to proceed to Phase II
 - Created a preliminary design that addressed the three barriers
 - Capital cost, performance, and reliability/O&M cost
- May 09 May 10
 - Finalized overall design of the receiver
 - Designed to address all the barriers
 - Finalized two tube materials
 - Achieves objective on lowering capital cost and improving reliability
 - Finalized repair processes to be demonstrated during testing
 - Remove & replace a tube and In-place tube repairs
 - Finalizing four tube coatings
 - Objectives: lower capital cost, increase reliability & lower O&M

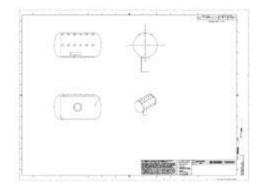
Note: No data to present at this time. Data from testing will be gathered during Phase III.

Current Receiver Design

U.S. DEPARTMENT OF ENERGY

Energy Efficiency & Renewable Energy

Future Plans (FY 2010 & FY 2011)



- FY10 Project Plans
 - Finalize design
 - Perform Critical Design Review
 - Release all drawings
 - Procure long lead hardware
 - Submit Phase 2 report
 - Proceed thru Go/No Go gate with a "Go" decision
- FY11 Project Plans
 - Procure remaining hardware
 - Fabricate & test receiver panel at Sandia
 - Issue final report including test results & production scenarios

Risk Mitigation

Energy Efficiency & Renewable Energy

- Project path well defined
- Risks mitigation in place
 - Drawing risk managed by:
 - Correct level of personnel
 - Tools needed to complete the task
 - Fabrication risk is managed by:
 - Selecting proficient vendors
 - Maintaining good communication
 - Involved in fabrication process
 - Testing risk is managed by:
 - Good upfront communication
 - · Coordination with Sandia
 - Clear & concise test plan
 - On site personnel during testing

U.S. DEPARTMENT OF

Collaborations/Interactions

- No collaborators for this project
- Project interactions with Sandia (NSTTF)
 - Test facility for this project
 - Federal laboratory
 - Within the DOE Solar Program
 - Extensive interaction
 - Plan & coordinate testing
 - Integration of the hardware in the facility
- Project interactions with sub-tier vendors
 - Hardware procurement & fabrication
 - Independent companies
 - Outside the DOE Solar Program
 - Extensive interaction
 - Communicate design requirements
 - Answer questions

Summary Slide

- On schedule
 - Finish design
 - Hold Critical Design Review
 - Submit Phase II report, end of August 2010
- Very encouraged with the design
 - Addressing three technical barriers
 - Capital cost
 - Performance
 - Reliability & O&M cost
- Fabrication and testing in 2011
 - Data will assist design of future CSP plants

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

This presentation does not contain any proprietary, confidential, or otherwise restricted information.