U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Solar Power Tower R&D

May 24-27, 2010 Washington D.C.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

CSP: Tower R&D

Gregory J. Kolb

Sandia National Laboratories <u>gikolb@sandia.gov</u> (505) 844-1887

Date: May 26, 2010

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Overview

Timeline

- Start: October 1st , 2009
- End: Ongoing program activity Power Tower R&D is now an official R&D Agreement at DOE after a several year absence

Budget

- FY10 budget is \$1050K
 - 760 K received so far
- FY09 budget was \$233K (conducted as a task within CSP Advanced Concepts R&D Agreement)

Barriers

- Barriers addressed
 - Technology Risk
 - Capital Cost Reduction
 - Improved Performance

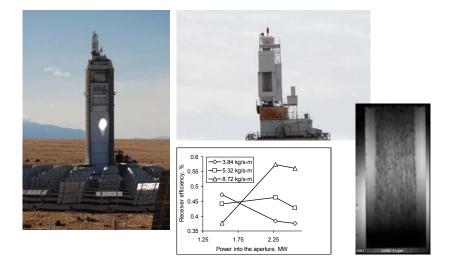
Partners

- Interactions/ collaborations
 - Power Tower Industry
 - Solar Reserve/Rocketdyne
 - Brightsource
 - eSolar
 - SENER
 - Abengoa
 - DLR (German Nat'l Lab)

Accomplishments Reported at 2009 Peer Review

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

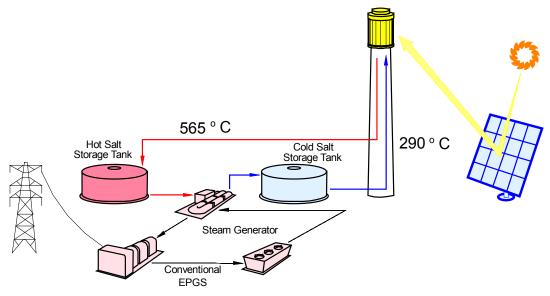

- 1-mile heliostat test
 - SolarReserve
- Steam receiver model upgrade
 - eSolar, Brightsource, Abengoa

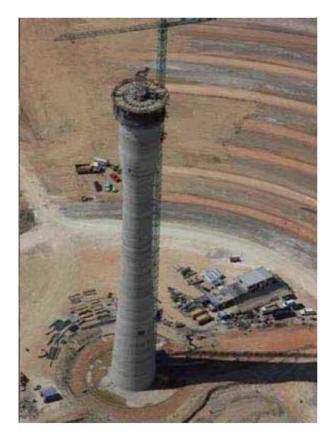
- Rocketdyne and eSolar
- Solid-particle receiver test
 - H₂ production and Hi-T power cycles

Steam Receivers

- Resurrection of steam receiver technology
 - PS-10 MW_e on grid 6/07, PS-20 5/09 (Abengoa)
 - 5 MW_e, 2-tower plant on utility grid 7/09 (eSolar)
 - 5 MW_t thermal-only demonstration since late 08 (Brightsource)
 - Lessons learned from 10 MW_e Solar One, shutdown in 1988
 - Steam receivers perceived as "low risk," many PPA's announced

eSolar





Abengoa

Molten Salt Receivers

- SENER 17 MW_e Gemsolar project now under construction
 - 2650 heliostats, 116 m² each
 - 120 MW_t receiver (3X scaleup from Solar Two), 140 m tower
 - 15 hrs of storage (6X scaleup)
 - Startup in 2011 (Torresol)
- Solar Reserve's receiver is 540 MWt
 - PPAs announced

U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

Energy Efficiency & Renewable Energy

ENERGY

R&D Tasks

- 1. Power Tower Plant Analysis
 - Develop Tower R&D Roadmap
 - Analysis of next generation power towers
 - Software tool development and industry training
- 2. Heliostat Analysis
 - New CAD models to include gravity and wind effects on performance
 - Develop tracking software with self correcting features to achieve <1mrad tracking accuracy
- 3. Advanced Heliostat Development
 - Support testing and performance optimization of industry heliostats
 - Design reviews and field performance tools
 - Rapid alignment tools

Relevance of Tower R&D

- Financial risk of new tower plants perceived to be high
 - Only 35 MW of commercial towers now operating
 - Sandia is performing tests and evaluations with industry to reduce risk
 - Near-term R&D
- Heliostat cost and performance dominate economics of tower plants
 - Heliostats account for ~50% of tower plant capital cost
 - Each power tower company is developing their own heliostat, each having their own advantages and disadvantages
 - Near-term R&D
- Tower plant heat-to-electricity efficiency can be improved
 - Increase from 42% to 48% (Mid-term R&D)
 - Eventually increase to >50% conversion efficiency (Long-term R&D)

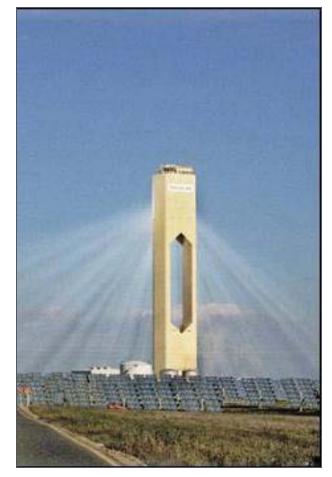
Technical Accomplishments Since Last Peer Review

- Task 1: Power Tower Analysis
- Task 2: Heliostat Analysis
- Task 3: Advanced Heliostat Development

Tower Roadmap

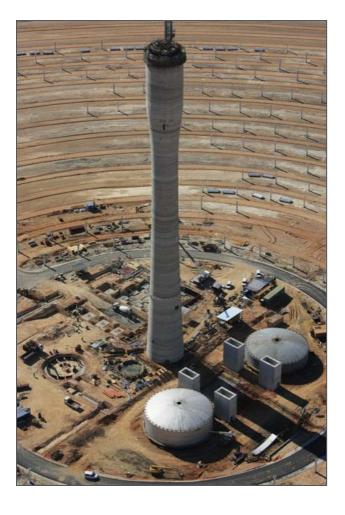
Power Tower Road Map meeting conducted at Sandia's NSTTF March 24 and 25, 2010.

Purpose: to start development of a technology road map to accelerate the commercial deployment of Power Towers.


- address technology development issues,
- reduce the cost of Power Tower systems and components, and
- discuss non-technical issues that could accelerate deployment.

Energy Efficiency & Renewable Energy

DOE will use the Power Tower roadmap to


- evaluate current projects,
- identify new Funding Opportunity topics,
- advise laboratory research,
- guide DOE CSP budget requests, and
- support the development of DOE's next Program Plan for the Solar Energy Technology Program.

Task 1: Power Tower Plant Analysis

Energy Efficiency & Renewable Energy

ROADMAP ATTENDEES

SENER Eng, San Francisco, CA BrightSource Energy, Inc., SolarReserve, Santa Monica, CA Worley Parsons, Golden, CO 80401 Black&Veatch Overland Park, KS Rocketdyne, Canoga Park CA eSolar. Pasadena, CA Abengoa Solar, Denver, CO. Sargent & Lundy, Chicago, IL EPRI, Albuquerque, NM NREL, Golden, CO DOE HQ, Washington, DC Sandia Nat. Labs. Albuquerque, NM

Energy Efficiency & Renewable Energy

Roadmap Process and Schedule

- a) Determine baseline and goals for component **Preli** costs and performance,
- b) Identify technology improvement opportunities Preliminary evaluation with ongoing analysis. (TIOs),
- c) Assess and prioritize TIOs,
- d) Develop a draft Power Tower Road Map for review by industry, and
- e) Publish final Power Tower Road Map.

Preliminary evaluation with ongoing analysis.

Preliminary evaluation with ongoing analysis.

Draft available in mid June 2010.

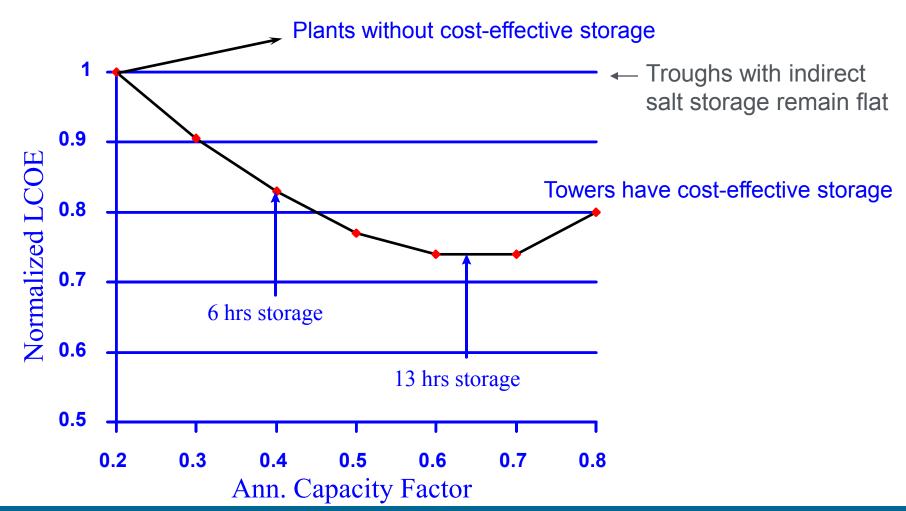
Final draft scheduled by late July early August.

Roadmap Baseline Subsystem Costs and Plausible Goals

	Solar Field	Solar Receiver	Thermal Storage	Power Block	Steam Generation	O&M
Baseline (prelim.)	\$200/m ²	\$200/kW	\$30/kWh _t	\$1000/kW	\$280-350/kW _e	\$65/kWyr
Plausible Goal	\$120/m ²	\$170/kW	\$20/kWh _t	\$800/kW _e	\$250/kW _e	\$50/kWyr

Roadmap Technology Improvement Opportunities (TIO)

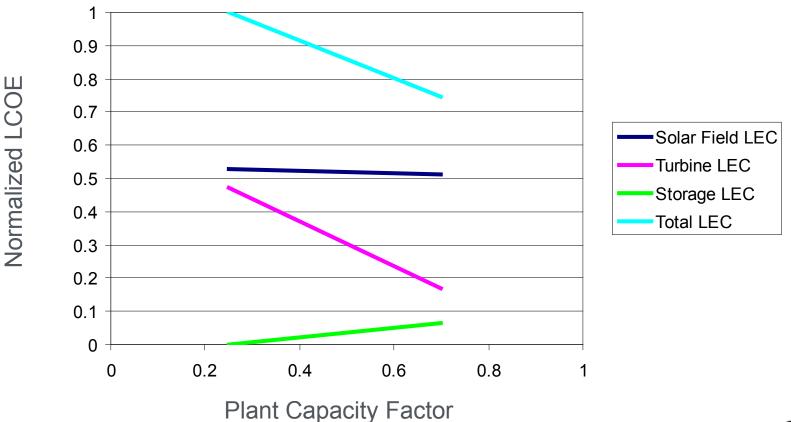
Solar Field	Solar Receiver	Thermal Storage	Power Block/Balance of Plant
 Drives and controls Impact of wind loads Anti-fouling/cleaning of glass Need for a manufacturing funding opportunity announcement (FOA) Optical testing of a complete assembly Optimization of structure, facet, etc. 	 Receiver materials testing data base Selective absorbers High temperature receivers (600-700°C) Tall tower acceptance Flux measurements Hybrid and steam receivers Receiver thermal loss measurement and mitigation 	 High temperature storage (alternative fluids, containment, single-tank ratcheting, etc.) Valves and non-welded flanges Hybridization system study Solid storage for steam Education: value of storage Phase change material 	 Low water use cooling (Ultra) supercritical steam cycles Supercritical CO2 / advanced power cycles High efficiency hybrid configurations Designs for rapid temperature changes Reduction of parasitic loads


Sandia's initial evaluation of Roadmap cost goals suggest that Tower LCOE can be reduced by >40%

- <u>Tower vs. Trough analysis</u> conducted by Sandia/NREL and presented to DOE in February 2010
 - First side-by-side comparison since Sargent and Lundy study
 - Sandia/NREL concluded that original Sargent and Lundy economic comparison has not changed significantly (in a relative sense)
 - New investigation at near "base-load" capacity factors (70%) concluded that tower LCOE should be ~35% lower than troughs in the near term
 - 13 to 15 hrs of storage is needed for base load
 - Storage cost for towers is nominally 3X lower than troughs
 - Tower capacity factor is more uniform throughout the year than troughs

Energy Efficiency & Renewable Energy

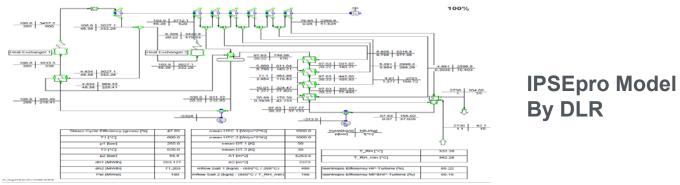
In a molten salt power tower, LEC is reduced by adding up to 13 hours of storage



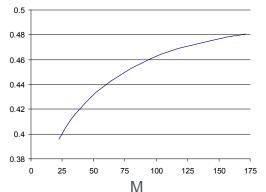
Power Tower LEC is reduced up to 25% for a given power block

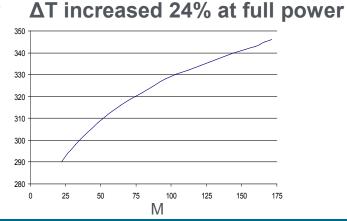
by adding storage and increasing the solar field size

to increase plant capacity factor



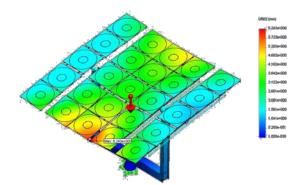
Task 1: Power Tower Plant Analysis

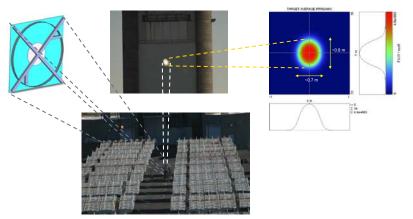



Energy Efficiency & Renewable Energy

- Next generation tower study is underway
 - Raise salt temperature from 565 °C to 650 °C
 - Increase Rankine efficiency from 42% to 48% •
 - Reduce storage cost by increasing ΔT

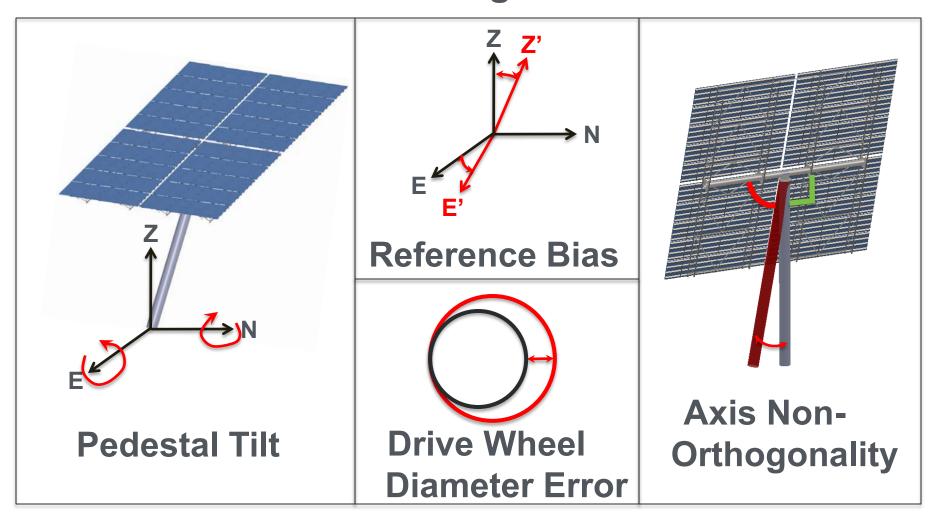
48% Rankine η at full power



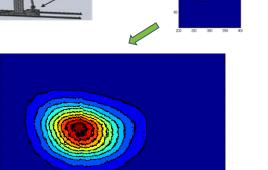

Task 2: Heliostat Analysis

Energy Efficiency & Renewable Energy

- Initial CAD model of NSTTF heliostat completed
 - SolidWorks finite-element model
 - CosmosWorks analysis of wind and gravity
 - ASAP ray-trace optics model
 - Methodology developed by CSP Advanced Concepts Agreement



- Initial error-correcting heliostat tracking software developed
 - Compensates for heliostat manufacturing and installation errors such as pedestal tilt, non-orthogonal structure, encoder offsets
 - Technique first described by Baheti & Scott (1980) with modifications by recent Stirling Dish R&D



Heliostat Tracking Error Sources

Supported the installation of Rocketdyne heliostats at NSTTF

- 62 m² heliostat
- 1st generation heliostat test completed
- Three 2nd generation units now being installed
- Total field flux mapping tool under development
 - Moving wand
 - Stitching software

Milestones	Task #	Date
1. Provide analysis training to 3 or more organizations from US industry	1	8/31/10
2. Complete draft of SAND report summarizing system analysis of new power tower concepts capable of ≥650 °C	1	9/30/10
3. Complete CAD models of NSTTF heliostats	2	2/18/10
4. Validate models of heliostats	2	9/30/10
5. Complete initial development of heliostat flux characterization tool	3	7/31/10
6. Develop initial heliostat slope-error and alignment methods	3	9/30/10

- Expand R&D collaboration with power tower companies to reduce technical risk of 1st commercial projects
 - During design phase
 - During startup, test, and evaluation phases
- Develop and implement an R&D plan for the labs that address the TIO's identified in the March 2010 Roadmap Meeting
- Perform analysis and test prototype hardware to support development of next-generation power towers
 - Raise operating temperature from today's 565 °C, to 650 °C and beyond
 - Improve thermal conversion efficiency from today's 42% to 48% and beyond

Summary

- After a several year lapse, Power Tower R&D is once again a principal agreement within the DOE solar program
- Commercial interest in power towers is growing strong and DOE R&D funding was increased by a factor of 5 in 2010
- 5 commercial tower companies came together for the first time at Sandia to help develop a technology Roadmap
- Heliostat issues dominate the cost and performance of power tower projects and most of the DOE program is devoted to heliostats
- If towers can surpass financial/technical risk hurdles, they are predicted to achieve lower LCOEs than troughs, especially for plants with near base-load capacity factors
- The technology to support next-generation towers (650 °C, 48% efficient) is very plausible and within reach