PLANAR OPTICAL WAVEGUIDE COUPLER TRANSFORMERS FOR HIGH-POWER SOLAR ENERGY COLLECTION AND TRANSMISSION

Nobuhiko P. Kobayashi
Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, California, U.S.A.
Nanostructured Energy Conversion Technology and Research (NECTAR)
Advanced Studies Laboratories, University of California Santa Cruz - NASA Ames Research Center, Moffett Field, California, U.S.A.

R. Ernest Demaray
Antropy Inc. & Demaray LLC, Portola Valley, California, U.S.A.

Ravi Mullapdi
Tango Systems, Inc. San Jose, California, U.S.A.
Outline

1. Background
2. Unique sputtering technology
3. Amorphous dielectric films
4. Applications
5. Summary
Background and Motivation

A large amount of energy from the sun

In a single hour the sun delivers the same amount of energy as consumed by all of humanity in a year – about 5×10^{20}J, but it’s **highly diluted**

Sun light \rightarrow Electricity

Transport

Electricity \rightarrow Light

Electricity \rightarrow Heat

Sun light \rightarrow Light

No transportation

Light \rightarrow Light

Light \rightarrow Heat

http://www.topnews.in/tidal-interaction-making-earth-and-sun-push-each-other-away-2173555

Background and Motivation

Concentrated sun light into an optical fiber

Sun light \rightarrow Concentration \rightarrow “Directional” Transportation \rightarrow Light \rightarrow Daylighting

Use as light

http://www.selftest.net/media/solar/

Use as heat or storage for later uses

http://fscreenfresnel.en.busytrade.com

En.wikipedia.org

http://blogs.cisco.com

http://www.solarnstuff.com

Strategy and Goal

Concentrated sun light into an optical fiber

- NA mismatch
- Mode size mismatch
- Refractive index mismatch

Optical collector/concentrator

Solar light

Optical transmission line
Concentrated sun light into an optical fiber

Need thin films with $1.4 < n < 2.8$ for 400-1000nm and k as small as possible
Unique Sputtering Technology

Pulsed DC reactive scanning magnetron sputtering with AC substrate bias

Niobium oxide (TEM, scale bar 5nm)
TiO\textsubscript{x} and HfO\textsubscript{x}

TiO\textsubscript{x} and HfO\textsubscript{x}: with and without the substrate bias
TiHfOx

TiHfOx: varied sputtering power
Sunlight into an Optical Fiber
Mode size converter/Out-coupler for LED/LD

Antropy, Inc/Demaray, LLC
US8045832 (Oct. 25, 2011)
US6884327 (Apr. 26, 2005)
The mirror plates will be AR coated with a single layer with refractive index continuously varying.
Sunlight into an Optical Fiber
Ultimate application

http://inhabitat.com

http://www.himawari-net.co.jp
Sunlight into an Optical Fiber
Really ultimate applications

- Eliminate heat engine
- Eliminate working fluid and pipes
- Minimize emission loss and eliminate working liquid/vapor

http://mcensustainableenergy.pbworks.com
www.getsolar.com
www.rainbowskill.com

1m² concentrator for solar daylighting
25m² concentrator for solar thermal power generation
25kW in an optical power over 100m with >90% transmission

Demaray and Kobayashi at the NREL solar furnace

Ernest and Nobby at NREL, Golden CO (Dec '12)
Acknowledgement
Sponsors and Students

Program Director: Dr. Ilan Gur
TPC: Dr. Russel Ross

Kate Norris David Fryauf Junce Zhang Juan Diaz Amanda Flores