## Prototype Development of Self-Cleaning CSP Collectors

#### **Boston University**

Award # DE-EE0005794

PI: Malay Mazumder

CoPI: Mark Horenstein, Nitin Joglekar Students: Jeremy Stark, Daniel Erickson, Fang Hao, Arash Sayyah, Steven Jung, Atri RayChowdhury, John Hudelson, Anne Raymond, Mathew Beardsworth, Daniel Neuman

**Abengoa Solar Inc.** Adam Botts, David Powell, and Diego Arias

**Sandia National Lab:** Cifford Ho and Cheryl Ghanbari











# **Project Objectives**

- Maintain high optical efficiency of CSP systems by keeping solar collectors dust free
- Proof-of-concept of Electrodynamic Screens (EDS) for self-cleaning solar concentrators
- Prototype EDS-based self-cleaning solar collectors
  - Dust removal efficiency > 90%
  - Cleaning time period < 2 minutes</p>
  - Energy consumption < 0.1% of solar collector production</p>
  - Without requiring any water or manual labor
- Complete lab and field evaluations of prototype EDS integrated mirrors in collaboration with Sandia National Lab and Abengoa Solar Inc.





# **Examples of Dust Deposition**

#### Dust storms severely decrease power output



- Nellis Air Force Base Solar Plant (Nevada)
- Currently, panels must be cleaned frequently with water.







#### Reflectance (CSP) and Transmission (CPV) Losses Reported from Different Plants

| Location       | Specimen       | Exposure | Affected      | Maximum       |
|----------------|----------------|----------|---------------|---------------|
| (latitude)     | Туре           | period   | parameter     | recorded loss |
| Albuquerque,   | Silvered glass | 5 weeks  | Reflectance   | 25%           |
| NM (35.11N)    | mirror         |          |               |               |
| China Lake, CA | Heliostat      | 7 months | Reflectance   | 25%           |
| (35N)          | mirror         |          |               |               |
| Albuquerque,   | Silvered glass | 200 days | Reflectance   | 24.5%         |
| NM (35.11N)    | heliostat      |          |               |               |
| Albuquerque,   | Mirror         | 8 weeks  | Reflectance   | 14%           |
| NM (35.11N)    | samples        |          |               |               |
| Albuquerque,   | Silvered glass | 60 days  | Reflectance   | 12.6%         |
| NM (35.11N)    | mirror         |          |               |               |
| Henderson, NV  | Glass mirror   | 1 month  | Reflectance   | 52%           |
| (36N)          |                |          |               |               |
|                | Aluminized     | 2 months | Reflectance   | 73%           |
|                | acrylic mirror |          |               |               |
| San Antonio,   | Glass mirror   | 2 months | Reflectance   | 20%           |
| TX (29N)       |                |          |               |               |
| Dalton, GA     | Mirror         | 1 month  | Reflectance   | 3%            |
| (34N)          |                |          |               |               |
|                | Aluminized     | 1 month  | Reflectance   | 8%            |
|                | acrylic mirror |          |               |               |
| Riyadh, Saudi  | CPV            | 12 day   | Output power  | 30.6%         |
| Arabia (24N)   |                |          |               |               |
| Madrid, Spain  | CPV            | 5 months | Short-circuit | 6.5%          |
| (40N)          |                |          | current       |               |





#### Reflectance (CSP) and Transmission (CPV) Losses Reported from Different Plants

| Location       | Specimen       | Exposure   | Affected      | Maximum       |
|----------------|----------------|------------|---------------|---------------|
| (latitude)     | Type           | period     | parameter     | recorded loss |
| Albuquerque,   | Silvered glass | 5 weeks    | Reflectance   | 25%           |
| NM (35.11N)    | mirror         |            |               |               |
| China Lake, CA | Heliostat      | 7 months   | Reflectance   | 25%           |
| (35N)          | mirror         |            |               |               |
| Albuquerque.   | Silvered glass | 200 days   | Reflectance   | 24.5%         |
| NM (35.11N)    | heliostat      |            |               |               |
| Albuquerque,   | Minim          | Sweeks NAL | Reflectance   | 14% 050/      |
| NM (35.11N)    |                | Glass Wir  | ror (5 wee    | KS): 25%      |
| Albuquerque,   | Silvered glass | 60 days    | Reflectance   | 12.6%         |
| NM (35.11N)    | mirror         |            |               |               |
| Henderson, NV  | Glass m Hello  | stat Mirro | r (7 Month    | s): 25%       |
| (36N)          |                |            |               |               |
|                | Aluminized     | 2 months   | Reflectance   | 73%           |
|                | acrylic mirror | CPV        | (12 Davs)     | : 30.6%       |
| San Antonio,   | Glass mirror   | 2 months   | Reflectance   | 20%           |
| TX (29N)       |                |            |               |               |
| Dalton, GA     | Mirror         | 1 month    | Reflectance   | 3%            |
| (34N)          |                |            |               |               |
|                | Aluminized     | 1 month    | Reflectance   | 8%            |
|                | acrylic mirror |            |               |               |
| Riyadh, Saudi  | CPV            | 12 day     | Output power  | 30.6%         |
| Arabia (24N)   |                | U          | A A           |               |
| Madrid, Spain  | CPV            | 5 months   | Short-circuit | 6.5%          |
| (40N)          |                |            | current       |               |





# **Transmission Loss Due to Dust Deposition**







# Fundamental Studies on Transparent Electrodynamic Screens (EDS)

- Dust charging mechanisms on the EDS surface
- Effects of size, shape, & chemical composition of dust particles, dielectric film on EDS surface, and pulsed voltage applied to electrodes
- Simulation of particle trajectories on EDS
- Theoretical analysis
- Experimental investigation





# **Fundamental Studies of EDS Operation**

#### Particle adhesion and removal forces

- Forces of particle adhesion:  $F_{adh} = F_{vdw} + F_{im} + F_{AB} + F_{CB} + F_{g}$
- Gravitational force: F<sub>g</sub> = m<sub>d</sub> g,
- Van der Waals force,  $\tilde{F}_{vdw} = Ad/(12 z^2)$ ,
- Capillary force of attraction due to surface tension:  $F_s = 2\pi d\gamma cos\theta + 2\pi d\gamma_{sl}$ ,
- Image force of adhesion:  $F_{im} = q^2/(16 \pi \epsilon_o \epsilon_d t^2)$

#### Repulsive forces for dust removal during EDS operation:

- Coulomb Repulsive Force: F<sub>c</sub> = q<sub>d</sub>E
- Dielectrophoretic (DEP) Force  $F_d = (P\nabla)E$
- The ratio of maximum repulsion force to the maximum force of attraction:  $E(z)_{max}$ ,  $q_{max}$ ,  $F_{adh}$  (max) =  $E(z)_{max}$ ,  $q_{max}$ ,  $q_{max}^2/(16 \pi \varepsilon_o \varepsilon_d t^2)$ ]





# **Ratio of repulsion to adhesion forces**



# Methodology and Approach for EDS Use

Account for all forces on a single particle and compute its trajectory



# **Dust Removal Mechanism**



Alternating coulomb force pushes dust particles upwards and laterally. Traveling wave causes deposited dust to slide off of the screen.



# **Optical Modeling Analysis** (Collaboration with Sandia National Labs)



Electrodynamic screen integrated with solar-concentrator mirror

- (1) Fluoropolymer film
- (2) Thin layer of SiO<sub>2</sub>
- (3) Parallel transparent electrodes
- (4) Borosilicate glass plate
- (5) Silver coating of back-surface reflectors





# **CPV** Optics with **EDS**







# Reflection efficiency by PU film (50 µm)



## **Reflection loss vs. transparency of electrodes**



# Materials being studied

- Substrates: Borosilicate glass, Heliostat mirrors, Polymer films
- Electrodes: Silver ink, PDOT:PSS, Silver nanowires, AZO
- Dielectric Film: Polyurethane, Urethane, ETFE, Tefzel
- Dust Samples: Sample dust from different deserts: Mojave Desert, Negev Desert, Gobi Desert, dust samples from Abu Dhabi, Saudi Arabia



# **Prototype EDS Development**

- Surface treatment of substrates (Borosilicate glass or Second surface mirrors)
- Deposition of electrodes
  - Screen-printing
  - Ink-jet printing
  - Photolithography
- Application of transparent dielectric film to embed electrodes
- Production of power supplies, interconnection to EDS
- EDS testing for dust removal



## **Images of Screen-Printed EDS**





First screen printing: two electrode phases Third phase printed on the dielectric stop-gap





Dielectric stop-gap printed over one phase Finished EDS fabricated with screenprinting



# **EDS on Rio-Glass Mirror**



Left: Two fully functional EDS showing reflectivity of the mirror beneath the shield Right: Close-up of mirror image from the EDS-mirror system



# **EDS** with transparent conducting ink





# Low Frequency Low-Power Pulsed HV Supply

#### Power management



- CSP self-powers its own EDS
- Cleaning is automatically triggered by dust sensor on panel
- Operation for short periods only (not continuous)





# **Electrostatic Charging of Particles by EDS**







22

#### Surface mass concentration of desert dust on EDS surface





# **EDS Dust Removal Efficiency**



# Water Cleaning vs. EDS Cleaning







## EDS Cost Analysis (Collaboration With Abengoa Solar Inc.)

## Accomplishments

• Development of manufacturing cost module

 Collaboration with Abengoa Solar regarding input parameters

- Addition of power supply to cost module
- $\odot$  Module analysis to isolate cost drivers
  - » Cost driver variation analysis
- Operational cost module progress

   Gathered data for general EDS operational expression

\*EDS prototype module pertains to 15cm square borosilicate substrate





# **Modeling Overview**



Purpose: To qualify major cost elements, and provide economic insights on tradeoffs associated with design and operational decisions





27

# **Cost Analysis for Prototype Production**



Sample output of fixed and variable cost breakdown for the manufacturing-cost model





#### EDS Payback Time Period Analysis Based on estimated EDS cost\* per m<sup>2</sup>



EDS Lifetime (Years)

Data taken from manufacturing cost module estimates



# Conclusions

# **Our Studies Show Feasibility of:**

- Production and Evaluation of Self-cleaning CSP Optics
- Demonstration of Low-cost Self-cleaning Technology to Industry Partners, Investors (Abengoa Solar Inc.)
- Modeling and Field Testing at Sandia National Labs
- Partnership with Manufacturing Companies
- Cost-analysis of prototype production and scale-up
- Cost-effective application of EDS in CSP, CPV, and PV Optics





# Video Demonstration



# Acknowledgement SunShot U.S. Department of Energy

# Abengoa Solar Sandia National Laboratories