

Solar Energy Technologies Program

The Prospect for \$1/Watt Electricity from Solar

\$1/W Workshop August 10, 2010

John Lushetsky

Program Manager

Solar Energy Technologies Program (SETP)

Department of Energy

Office of Energy Efficiency and Renewable Energy

"It's tough making predictions, especially about the future."

- Several sources

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Utility PV: LCOE Targets

Financing Conditions

- Low: 8.2% after-tax
 WACC
- High: 9.9% after-tax
 WACC

Geographic Locations

- Phoenix, AZ
- Kansas City, MO
- New York, NY

<u>2015</u>

- With the 30% ITC, PV is broadly competitive with wholesale electricity rates under all conditions
- With the 10% ITC, PV is equal to or below the CA MPR under most conditions and competitive with high wholesale electricity rates under the best insolation and financing conditions

<u>2030</u>

 With the 10% ITC, PV is broadly competitive with wholesale electricity rates under all financing and insolation conditions

Utility PV

* Assumes IOU or IPP ownership of PV, and thus the LCOE includes the taxes paid on electricity generated. Includes 5-year MACRS but not state or local incentives. The range in utility PV LCOE is due to different insolation and financing conditions. For a complete list of assumptions, see DOE Solar Cost Targets (2009 – 2030), in process.
 ‡ The electricity rate range represents one standard deviation below and above the mean U.S. wholesale electricity prices.
 § The 2009 CA MPR includes adjustments by utility for the time of delivery profile of solar (low case: SDG&E, mid case: SCE).

U.S. Department of Energy Solar Energy Technologies Program

Residential PV: LCOE Targets

Financing Mechanisms

- Home Mortgage (80% financing, 6.0% interest, 30-year term)
- Home Equity Loan (100% financing, 7.75% interest, 15-year term)

Geographic Locations

- Phoenix, AZ
- Kansas City, MO
- New York, NY

<u>2015</u>

 Without the ITC, PV is broadly competitive with residential electricity rates under all financing and insolation conditions

<u>2030</u>

 Without the ITC, PV has levelized costs that are lower than most residential electricity rates

* No state, local or utility incentives are included. The range in residential PV LCOE is due to different insolation and financing conditions. For a complete list of assumptions, see DOE Solar Cost Targets (2009 – 2030), in process.

‡ The electricity rate range represents one standard deviation below and above the mean U.S. residential electricity prices.

§ Property Assessed Clean Energy (PACE) Financing assumes 100% financing at 5.0% interest with a 20-year payback schedule

† Cash purchase assumes a discount rate of 9.2% (nominal), equal to the long term return on the S&P 500

Solar PV Experience Curves:

Crystalline Silicon (c-Si) Sources: Navigant, Bloomberg NEF, NREL internal cost models

Manufacturing Cost Model Scope: Crystalline Silicon PV

U.S. DEPARTMENT OF

313:46

- Detailed cost models developed for each step:
- Evaluate Technical (Cost) Improvement Opportunities
 - Simulate discrete manufacturing operations
- Sensitivity to independent process, material properties
- Margins at each step in the value chain
 - Intermediate product sales opportunity
 - pro forma income statement
 - Minimum sustainable: eliminate market noise from projections
- Collaborations with stakeholders from throughout the Industry critical to model development

Energy Efficiency &

Renewable Energy

Cost reduction of silicon feedstock to be led by introduction of FBR process

- By 2015, margin compression expected to drive SG-Si price to minimal sustainable.
- By 2030, 20% expected from FBR
- Additional driver for FBR will come from advanced cell architectures.

FBR process cost advantages:

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

11/11:(6

- Better silane gas utilization
- Lower temperature (energy)
- Improved yield (rates)
 - Capital utilization
- Total cost benefit: ~40%

Material quality:

• Fewer metal, O₂ impurities

Crystal growth advantages:

• Multiple recharge (i.e. semi continuous Cz-growth)

Polysilicon Manufacturing Methods

U.S. Department of Energy Solar Energy Technologies Program

Cost Reduction Opportunities: c-Si Wafers

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Mono Crystalline Silicon (c-Si) Crystallization and Wafering Costs:

Summary of Technical Improvement Strategies

Source: Sigen

U.S. Department of Energy Solar Energy Technologies Program

Kerfless wafer (80 microns)

Diamond wire wafering

Semi-continuous CZ-crystal growth

Key innovations

•

.

.

•

c-Si Cell Description: 2030

*Based on publicly disclosed (literature) cell designs, not intended to depict proprietary architectures

- All Rear (Interdigitated) Contacts
- High lifetime (n- type) wafer
- Ultra thin (80 microns) kerfless wafers
- High quality surface passivation
- Plated emitter contacts
 - Electroless nickel barrier, Cu plating
- Base point contact absorbers
 - Printed AI contacts

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

c-Si Cell Costs

Energy Efficiency & Renewable Energy

Mono Crystalline (c-Si) Cell Manufacturing Costs

Silicon PV approaching practical performance limit

2030 case: 24% production average cell, 21.5% module ۲

c-Si Module Costs

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Mono Crystalline (c-Si) Module Manufacturing Costs Technical (Cost) Improvement Opportunities

Solar PV Experience Curves:

Crystalline Silicon (c-Si) Sources: Navigant, Bloomberg NEF, NREL internal cost models

Solar PV Experience Curves:

Cadmium Telluride (CdTe) Sources: (CdTe) First Solar Earnings Presentation, SEC filings

Cummulative Production Volume (MWs)

CdTe Efficiency Road Map: Innovation Remains an Important Factor

Energy Efficiency & Renewable Energy

CdTe PV Module Efficiencies:

(First Solar) Reported Module Efficiency Data (2001 thru Q1 2010), Estimated (based on Champion Laboratory Cell) Production Potential

- First Solar stated (June 2009) goal for \$.52/W cost (\$.63/W price)
 - 14.4% implies a significant advancement in module technology (86% of current, or new 'champion cell')
 - Best in class c-Si module: ~79% of champion lab cell, many more years to close the gap

Solar PV Experience Curves:

Cadmium Telluride (CdTe) Sources: (CdTe) First Solar Earnings Presentation, SEC filings

Cummulative Production Volume (MWs)

Solar PV Experience Curves:

U.S. Department of Energy Solar Energy Technologies Program

\$0.50/W Module Challenge: Potential Breakdown of Module Costs

Energy Efficiency & Renewable Energy

	2010	2015	\$1/W Target	
	Cost	Cost	Cost (\$/W)	Cost (\$/m2)
Capital	\$0.24	\$0.20	\$0.10	\$28
Materials	\$1.11	\$0.49	\$0.23	\$68
Labor	\$0.27	\$0.12	\$0.06	\$17
Margin	\$0.79	\$0.24	\$0.11	
Total Module	\$1.70	\$1.05	\$0.50	

- In order to achieve \$0.50/W module selling price
 - Capex of \$0.70/W may be required.
 - Materials costs must be about \$68/m^{2*}
 - Glass, EVA, and backsheet today costs about \$18/m², about 25% of the budget for materials. Metallization next significant opportunity.
 - Manufacturing labor must account for less than \$0.06/W
 - For 100 MW factory, equivalent to 120 FTEs at \$50k/yr fully loaded

*\$/m2 assumes 25% efficiency

Non-Module Solar PV Installation (BoS) Costs

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Non Module Utility Scale Solar PV System Costs 20 MW Fxed axis Ground Mount System, Includes: O&M, Inverter

- Glass module installation costs burdened by disaggregate systems (number of components)
 - Integrate components at factory?

'Installation' labor:

- Nearly 75% of labor hours skilled
 - Electrician wage premium
 - Grid connect, wiring, power, other electronics

'O&M' costs: reliability

- Inverter reliability, repair costs
- System monitoring and preventative maintenance

'Indirect Project Costs' vary:

- Environmental review: \$100K, up to \$1 MM and 2 years
- Land prep.: <\$0.10/Wp, depending on site selection
- Transmission interconnect: \$1.0-\$1.5 MM, up to \$80 MM (prohibitive)

Utility Scale Solar PV: Non Module Costs

Energy Efficiency & Renewable Energy

Relative to the 25% module efficiency scenario, the \$0.50/Wp system must:

- Reduce fixed power costs (Inverter, O&M) by 66%
- Trim (short, long) wiring costs (content) and installation by 50%
- Decrease racking hardware, BoS components by 33%

Non Module Cost-Sensitivity to Efficiency

Energy Efficiency & Renewable Energy

• Module efficiency alone is not adequate to achieve grid parity (non-module costs exceed \$/W at practical limit; 25%)

Solar PV Energy Costs: Current and Projected, Leading Technologies

U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

 Unsubsidized Solar PV energy costs will remain >50% higher than US wholesale average (optimal solar resources)

Summary

ENERGY Energy Efficiency & Renewable Energy

- History of module cost reduction may not continue to be extrapolated
- Cost target for broad (unsubsidized) US adoption likely requires revolutionary technical innovations
 - Module cost and performance
 - Power electronics efficiency and reliability
 - BoS, installation costs
- Focus on high cost electricity markets may reduce the incentive for such industrial investments
- Success in the US market at \$1/W will enable US companies to lead in other regions of the world

Thank You

Energy Efficiency & Renewable Energy

Contact Information:

John Lushetsky Solar Energy Technologies Program Manager U.S. Department of Energy

Email: john.lushetsky@ee.doe.gov Phone: 202-287-1685 on the web: www.solar.energy.gov

U.S. Department of Energy Solar Energy Technologies Program