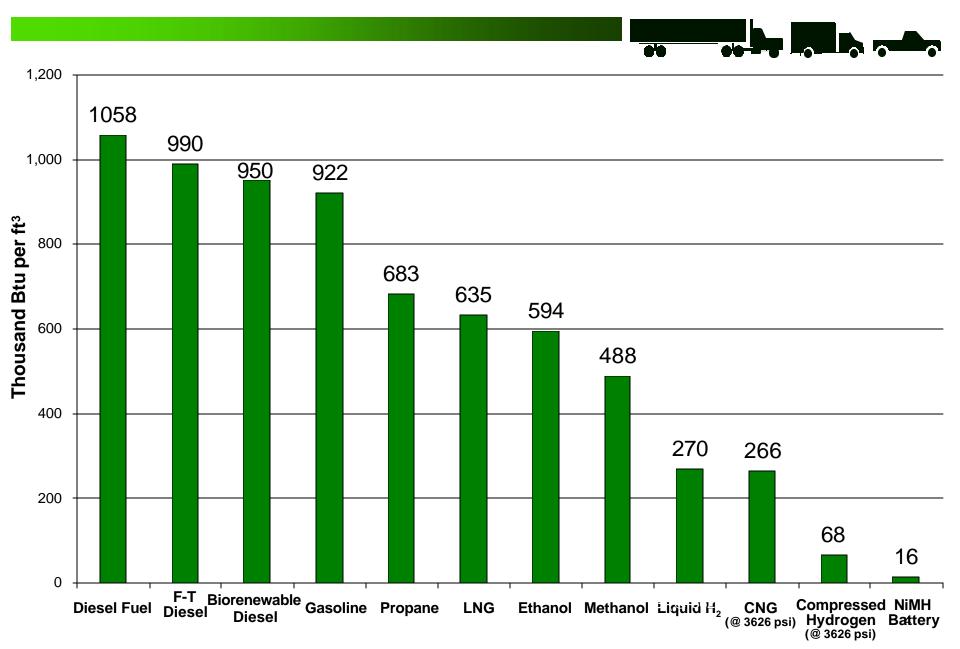
Fuels of the Future for Cars and Trucks

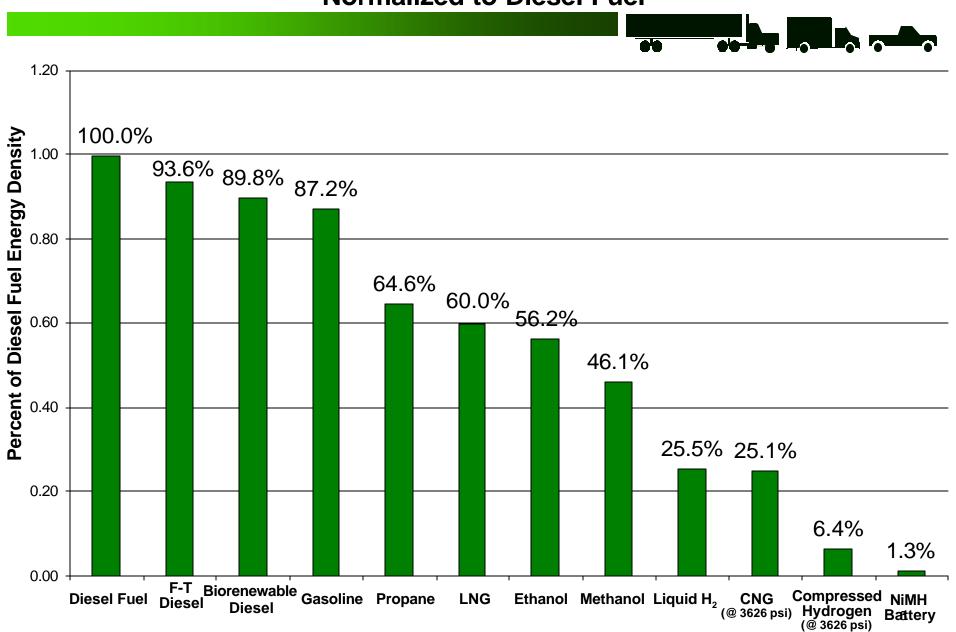
Dr. James J. Eberhardt
Energy Efficiency and Renewable Energy
U.S. Department of Energy

2002 Diesel Engine Emissions Reduction (DEER) Workshop San Diego, California August 25 - 29, 2002

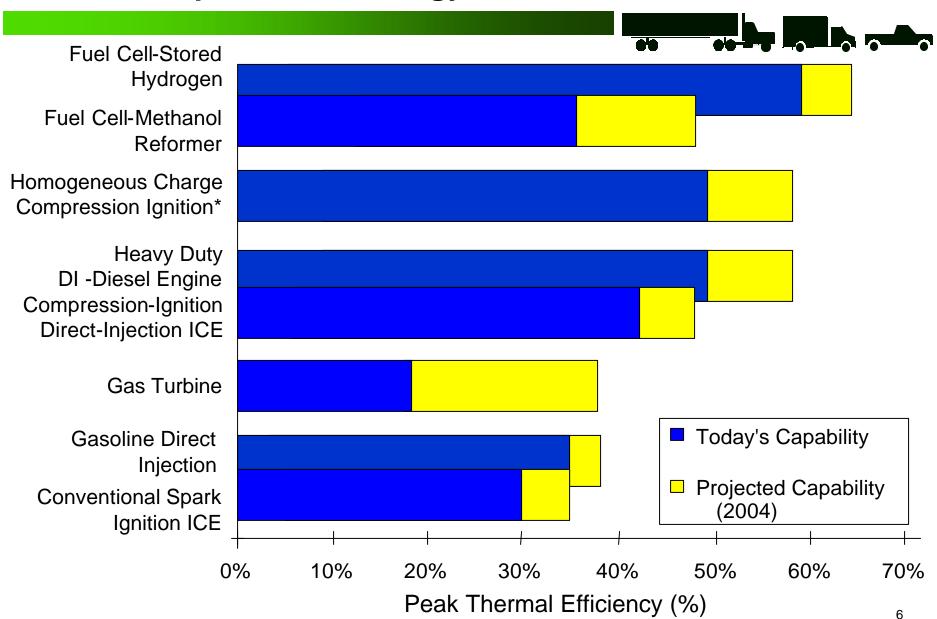
What Energy Source Will Power Engines of the Future?


- Presently we know of no energy source which can substitute for liquid hydrocarbon fuels.
- No other fuels:
 - Are so abundant
 - Have such a high energy density
 - Have such a high power density
 - Store energy so efficiently and conveniently
 - Release their stored energy so readily (rapid oxidation/combustion)
 - Have existing infrastructure
 - Are so easily transported

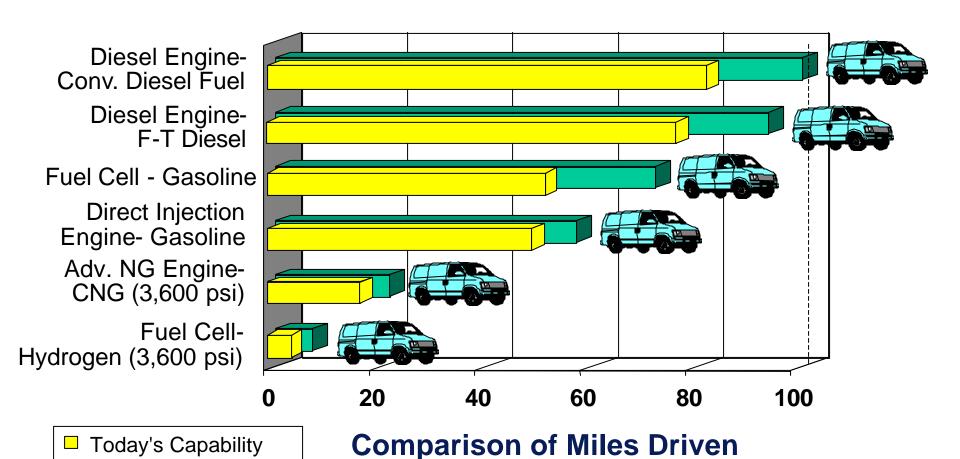
Potential Energy Carriers



- Currently, we see only 2 potential non-carbon based energy carriers that have the requisite volume needed to replace petroleum fuels
 - Hydrogen
 - Electricity


Energy Density of Fuels

Energy Density of Fuels Normalized to Diesel Fuel


Comparison of Energy Conversion Efficiencies

^{*} HCCI research focus: operate well across the load-speed map and extend the operating range to higher loads

Vehicle Range Limitation - Challenge To Be Overcome By Alternatives

Projected Capability

(2004)

(Same Volume of On-Board Fuel)

The Defining Characteristic: Car versus Truck

Car: A vehicle designed for a payload (people) which <u>never</u> exceeds its unloaded weight

Heavy Truck: A vehicle designed for a payload which <u>routinely</u> exceeds its unloaded weight

Truck Classification (by Gross Vehicle Weight)

6,000 lbs. & Less

CLASS 5 16,001-19,500 lbs.

Mini-bus

Mini pick-up

Full-size pick-up

Step Van

Multi-purpose

 $\overline{}$

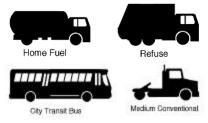
Full-size pick-up

Mini-bus

City Delivery

Crew compartment pick-up CLASS 2

6,001-10,000 lbs.



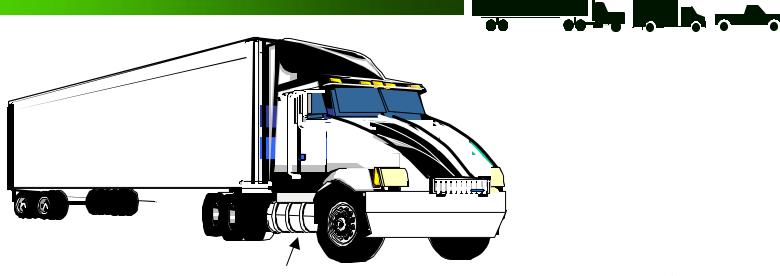
CLASS 6 19,501-26,000 lbs.

CLASS 3 10,001-14,000 lbs.

CLASS 7 26,001-33,000 lbs.

Landscaping/Utility

CLASS 4 14,001-16,000 lbs.


CLASS 8 33,001 lbs. & Over

Cars and Light-Duty Trucks vs. Heavy-Duty Trucks

Vehicle Type	Common GVW (lbs)	Unloaded Weight (lbs)	Payload (lbs)	Payload to Unloaded Weight Ratio (%)
Family Sedan – 5	3,400	~ 3,100	~ 1,000	32
passengers			(5 x 200 lb)	
Light Truck	5,150	4,039	1,111	28
Class 2b Truck	8,600	4,962	3,638	73
Class 3 Truck	11,400	5,845	5,600	96
Class 4 Truck	15,000	6,395	8,605	135
3-axle single unit truck	50,000 to 65,000	~ 22,600	27,400 to 42,400	121 to 188
4-axle single unit truck	62,000 to 70,000	~26,400	35,600 to 43.600	135 to 165
5-axle tractor semitrailer	80,000 to 99,000	~ 30,500	49,500 to 68,500	162 to 225

Volume of Fuel Needed for Equivalent Range (1,000 mile range)

Diesel Fueled – Two (one on each side) 84 gallon tanks (23 ft³)

Loss of revenue cargo space!

Fuel Cell/Hydrogen Fueled – Two 1,180 gallon tanks (316 ft³) at 3,600 psi (Each tank approximately: L = 150", D = 48")

Space and Weight Estimates for HV Batteries

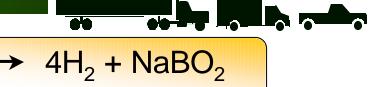
Cargo Space in trailer is typically 6,080 ft³ Front Axle Capacity is 12,000 lb, Rear Axle Capacity is 38,000 lb

LMP Batteries

Performance	Battery Space		Battery Weight	
	(ft³)	(% of cargo)	(lb)	(% of total capacity)
Range - 500 miles	358	5.9%	42,635	85%

Assumptions: Truck: 310 HP, 6 mpg fuel economy, 45% average engine thermal efficiency, Batteries: Spec. Power 241 W/kg, Energy Density: 143 Wh/l, Spec. Energy 121 Wh/kg

A Compact and Portable Way to Store Hydrogen for the Fuel Cell Car?



$$NaBH_4 + 2H_2O \longrightarrow 4H_2 + NaBO_2$$
 catalyst

- Sodium borohydride (a salt) is dissolved in water where it stays until gaseous hydrogen is needed
- When H₂ is needed, the solution is pumped over a catalyst
- The H₂ gas comes out and leaves behind sodium borate (another salt) which remains dissolved in water and goes to the spent fuel tank.

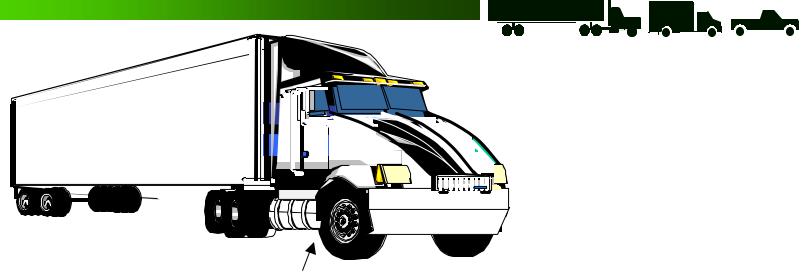
We have to carry 73.8kg for every 8kg of Hydrogen which is about 11% by weight or <50% that of methane, CH₄

A Compact and Portable Way to Store Hydrogen for the Fuel Cell Car?

$$NaBH_4 + 2H_2O \longrightarrow 4H_2 + NaBO_2$$
 catalyst

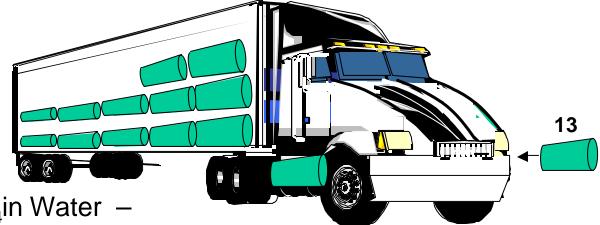
Claims

- Sodium borohydride is derived from borax, which is abundant and widely available
- Sodium borate is a common, non-toxic household item used in detergents
- □ Sodium borate can be recycled into new sodium borohydride


The Rest of the Story

- □ To recycle sodium borate into new sodium borohydride requires reduction reaction in a kiln at 900°C under highly corrosive environment
- □ Coke or methane (CH₄) is needed

$$CH_4 + NaBO_2$$
 $\xrightarrow{900C}$ $NaBH_4 + CO_2$


□ It takes more energy to make sodium borohydride than the energy released (or recovered) in the fuel cell

Volume of Fuel Needed for Equivalent Range (1,000 mile range)

Diesel Fueled – Two (one on each side) 84 gallon tanks (23 ft³)

Loss of revenue cargo space!

Fuel Cell/H₂ from NaBH₄in Water -

Twenty-six 84 gallon tanks (13 tanks containing

NaBH₄/water solution weighing 15,058 lbs.; 13 tanks for spent fuel).

Batteries not included (but required for fuel cell-hybrid configuration).

To Enable Replacement of Petroleum as Primary Energy Carrier for Ground Transportation

Fuel Cells for Heavy Vehicle Propulsion: Practical Considerations

- Hydrocarbon fuels need to be reformed on board the vehicle to produce H₂
- Furthermore, water gas shift is necessary to convert the energy content in the carbon-carbon bonds to H₂
- Powertrain hybridization may be required for heavy vehicle acceleration

Energy Embodied in Carbon-Carbon Bonds Increases with Hydrocarbon Molecular Weight

$$C_nH_{2n+2} + (n/2)O_2 \longrightarrow nCO + (n+1)H_2 -)H$$

On-Board Reforming of Hydrocarbons to Produce Hydrogen for the Fuel Cell

Partial oxidation of a hydrocarbon into CO and H₂

$$C_nH_{2n+2} + (n/2)O_2 \longrightarrow nCO + (n+1)H_2 -)H$$

Water-gas shift reaction of CO to produce more H₂ (also produces CO₂)

$$CO + H_2O +) H \longrightarrow H_2 + CO_2$$
Steam

To Enable Replacement of Petroleum as Primary Energy Carrier for Ground Transportation

Research Breakthroughs Are Needed

- Major technological breakthroughs are needed if hydrogen fuel cells are to displace the diesel engine
 - Electrolytic/water "splitting" hydrogen production (renewable, nuclear)
 - Low pressure on-board gaseous fuel storage OR on board highly efficient hydrocarbon fuel reformer
 - Greatly reduced catalyst loading in fuel stack/reformer (cost reduction)
- Major technological breakthroughs are needed if electrical energy is to displace the diesel engine
 - Electrical generation from non-fossil resources (renewable, nuclear)
 - On board high energy/high power density electric storage

DOE's FreedomCAR and Truck Partnerships

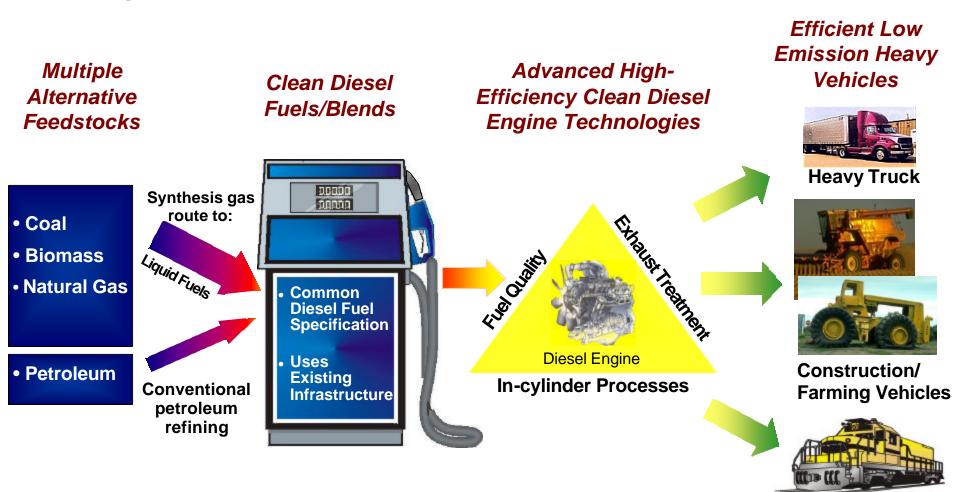
"While FreedomCAR is concerned with light-duty vehicles, we are also working with trucking industry partners on a revitalized 21st Century Truck Initiative."

"Unlike FreedomCAR, which is focused on hydrogen powered fuel cells, this 21st Century Truck Partnership will center on advanced combustion engines and heavy hybrid drives that can use renewable fuels."

"The new technologies in these engines and drives could, in effect, result in heavy truck transportation using dramatically less diesel fuels and throwing off virtually no emissions of NOx or soot."

⁻ Remarks of Energy Secretary Spencer Abraham at the 13th Annual Energy Efficiency Forum, National Press Club, June 12, 2002

Heavy-Duty Diesel – Increasingly Dominant Engine for Heavy Vehicles


- Improved fuel quality
- Combustion technology
 - DI rate shaping/electronic controls
 - HCCI (part load)
- Aftertreatment technology
- Hybridization

Future Liquid Fuels Strategy?

Locomotive

High-efficiency clean diesel-cycle engines utilizing compression ignitable clean fuels/blends derived from diverse feedstocks

Fischer-Tropsch Fuel Production

New Fischer-Tropsch production with partial oxidation and Cobalt-based catalysts reduces CO₂ formation

New Syngas Production

catalytic partial oxidation
$$CH_4 + 1/2 O_2 \rightarrow CO + 2H_2 + heat$$
 $\frac{H_2/CO \text{ ratio}}{\text{near-ideal}}$

Fischer-Tropsch Reaction

$$CO + H_2$$
 Co catalyst $(H_2C-)_n + H_2O_{(g)} + heat$

Fuels for the Next 10 Years

- □ Low sulfur diesel fuel (15 ppm) Dominant
- □ Low sulfur gasoline (30 ppm)
- Niche fuels in heavy-duty market
 - Natural Gas (as gas CNG) local delivery fleet vehicles
 - LNG (long haul fleet vehicles)
 - Biodiesel (B20) (long haul vehicles, marine applications)
- Natural gas derived liquids
 - Fischer Tropsch (blendstock for petroleum Diesel fuel)
- Ethanol as replacement oxygenate for MTBE in gasoline

Summary

What Will Be the Fuels of the Future?

- □ In the Near Term
 - Low sulfur gasoline and low sulfur diesel
- In the Mid to Long Term
 - Hydrogen from safe on-board storage appears promising for light-duty vehicles (FreedomCAR)
 - Breakthroughs are necessary in the economical production and intermediate storage (e.g., CH₃OH, NaBH₄) of hydrogen for light-duty vehicles
- □ For the Foreseeable Future (Next 10 25 years)?
 - With no alternative yet identified, it appears that hydrocarbon-based fuels (from a variety of feedstocks) will be the future fuels for heavy-duty vehicles