# Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Aftertreatment and Other Applications\*

L. Bromberg\*\*, D.R. Cohn\*\*, J. Heywood\*\*\*, A. Rabinovich\*\*
Massachusetts Institute of Technology
Cambridge MA 02139

Diesel Engine Emissions Reduction(DEER) Meeting
August 2002

\*Work supported by US DoE Office of Transportation Technology, Dr. S. Diamond

\*\* Plasma Science and Fusion Center, MIT

\*\*\*Sloan Automobile Laboratory, MIT

### Diesel Plasmatron Reformers

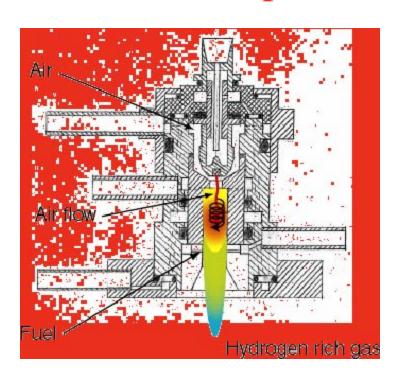
- Enhanced conversion of diesel fuel into hydrogen rich gas  $(H_2 + CO)$
- Electric discharge (plasma) continuously applied to flowing fuel/air mixture
- Plasma boosts partial oxidation reaction that reforms hydrocarbon fuels into hydrogen-rich gas

partial oxidation (at oxygen/carbon ratio=1):

$$C_n H_m + \frac{n}{2} O_2 = nCO + \frac{m}{2} H_2$$

Exothermic reaction

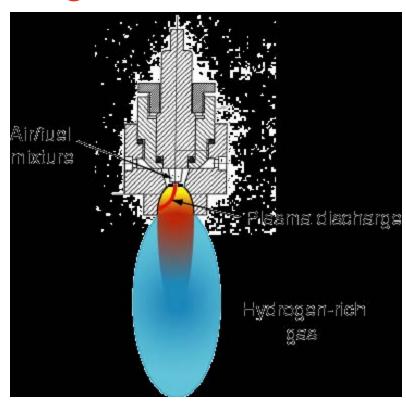
For diesel:


$$C_{15}H_{25} + 7.5 O_2 \rightarrow 15 CO + 12.5 H_2$$
 ~15% of energy released

- Plasmatron can boost conversion into hydrogen rich gas by
  - Production of reactive species throughout incoming fuel mixture
  - Mixing of reactants
  - Significantly increasing temperature

#### **Plasmatron Reformers**

- Continuous large volume reaction initiation at entrance to reformer
- Fuel gasified at entrance to reformer
- Uniform large volume reaction initiation
  - Radicals
  - Local high plasma energy regions
  - Improved mixing through plasmas induced turbulence
- Conversion reactions occur over whole reformer volume facilitating high conversion efficiency in small volume
- Soot decreased
- Additional enthalpy (for startup, transients) can be instantaneously provided


## Diesel plasmatron design evolution



#### DC arc plasmatron (thermal plasma)

High current, high power, water cooled electrodes

Circa 1999



Low current plasmatron (nonequilibirum plasma)

Low current, low power, long electrode lifetime Circa 2001

# Benefits of Diesel Plasmatron Operation

- Capability to robustly reform diesel fuel, a difficult to reform fuel, in compact device
- High power conversion efficiency (conversion of diesel into hydrogen and other fuels) without use of reforming catalyst (but with relatively modest hydrogen yields)
- Minimization of catalyst requirements when catalyst is used (catalyst may be used to increase the hydrogen yield)
- Rapid startup of hydrogen production
- Reliable hydrogen production under changing conditions
- Flexibility in reformer operating regime
- Operation with other difficult to convert fuels (biofuels)



MIT Microplasmatron Reformer\* \*sponsored by USDOE

# Low current plasmatron head



# Diesel plasmatron reformer Illustrative parameters for low current device

| Power          | W    | 300-600 |
|----------------|------|---------|
| Plasma Current | Α    | .14     |
| H2 flow rate   | slpm | 40      |
| Length         | cm   | 40      |
| Volume         | cm^3 | 2000    |
| Weight         | kg   | 3       |

# Biofuel reforming

• Results with DC arc plasmatron reformer

|                                       | CANOLA | CORN OIL |
|---------------------------------------|--------|----------|
| Fuel flow rate (g/s)                  | 0.3    | 0.47     |
| Hydrogen concentration (% vol)        | 25.6   | 23       |
| Methane concentration (% vol)         | 1.7    | 7.6      |
| Carbon Monoxide concentration (% vol) | 26     | 18.6     |
| Carbon Dioxide concentration (% vol)  | 0.3    | 2.1      |
| Hydrogen yield                        | 92%    | 84%      |

Goal is to get similar results with non-equilibrium plasmatron reformer

## Potential Exhaust Aftertreatment Applications

NOx absorber catalyst regeneration

HC SCR aftertreatment

• Onboard ammonia manufacturing

# NOx Absorber Catalyst Regeneration using Diesel plasmatron reformer

- Hydrogen rich gas is a significantly stronger reducing agent than diesel, useful for NOx regeneration
  - Lower temperature regeneration possible
  - Reduced loss in overall fuel efficiency due to lower requirements on amount of reducing gas
  - Shorter regeneration time due to greater reducing capability of hydrogen rich gas and higher concentration of reducing gases.
- Desulfurization at lower temperatures in a reducing atmosphere may be possible
- Reformate is hot, allowing increased temperature control over regeneration process, without the need of free oxygen

# Plasmatron fuel converter performance diesel fuel

|                             |     | Thermal<br>plasmatron<br>1999 | Low current<br>plasmatron<br>2001 |
|-----------------------------|-----|-------------------------------|-----------------------------------|
| Electrical power            | W   | >1500                         | 100-800                           |
| O/C ratio                   |     | ~1                            | 1.2-1.4                           |
| Fuel flow rate              | g/s | 0.6                           | 0.4                               |
| Hydrogen yield              | _   | 0.9                           | .59                               |
| Power conversion efficiency |     | 0.9                           | 0.85                              |
| Reformate temperature       | K   | 1200                          | 1000-1300                         |

# Reformate composition

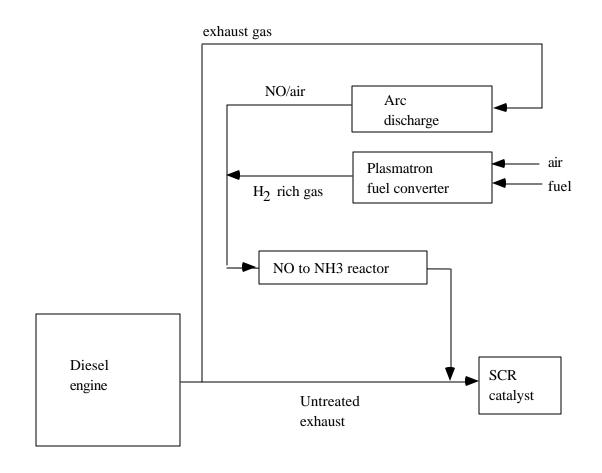
#### 2001

|                               | Homogeneous | Catalytic |
|-------------------------------|-------------|-----------|
| Concentration                 |             |           |
| H2                            | 0.08        | 0.18      |
| CO                            | 0.15        | 0.22      |
| C2's                          | 0.03        | 0.03      |
| Convesion                     |             |           |
| H2 in fuel to H2 in reformate | 50%         | 80%       |
| C in fuel to C2's             | 25%         | 5%        |
| Power conversion              | 0.75        | 0.7       |
| Reformate temperature (K)     | 1000        | 850       |

# Light hydrocarbon production for HC SCR

- In homogeneous mode, diesel plasmatron reformers can generate substantial amounts of C2's with high reformate thermal efficiency
  - Can be used for HC SCR (Hydrocarbon selective catalytic reduction)
  - Preliminary (unoptimized)
     ~30% carbon to C<sub>2</sub>'s
     conversion

# Diesel plasmatron reformer performance (2001 low current plasmatron)


| Electrical power (W)         | 500  |  |  |  |
|------------------------------|------|--|--|--|
| Reformate composition        |      |  |  |  |
| H2                           | 9.5  |  |  |  |
| CO                           | 15.2 |  |  |  |
| CO2                          | 4.1  |  |  |  |
| N2                           | 63.5 |  |  |  |
| CH4                          | 3.4  |  |  |  |
| C2H4+C2H6                    | 3.1  |  |  |  |
| C2H2                         | 0.1  |  |  |  |
| Yields                       |      |  |  |  |
| CmHn to H2                   | 44%  |  |  |  |
| CmHn to CO                   | 58%  |  |  |  |
| CmHn to C2's                 | 28%  |  |  |  |
| Reformate thermal efficiency | 88%  |  |  |  |
| Reformate power (HHV, kW)    | 36   |  |  |  |

## Diesel plasmatron reformer

### Onboard ammonia manufacturing

- Two options for manufacturing of ammonia using diesel plasmatron reformers are:
  - Ammonia from synthesis gas (N<sub>2</sub>, H<sub>2</sub> --> NH<sub>3</sub>)
  - Ammonia from onboard NO (NO, H<sub>2</sub> --> NH<sub>3</sub>)
- The practicality of using these processes is uncertain. Proof of principle experiments for these options have not been performed.

#### Ammonia from NO



## Nonthermal plasma production of ammonia

- Speculative approach
  - However, recent publication shows promise
    - Limited conversion has been demonstrated
    - need to improve yields
- Hydrogen production well characterized
- Nonthermal plasma process can be described by:
  - η: the electrical energy cost in the reactor (energy spent per ammonia molecule
  - ε: the hydrogen conversion (amount of hydrogen that is converted to ammonia).

# Diesel plasmatron reformer Present status

- Substantial improvements relative to first generation (point electrode) low current plasmatron reformer design
- Homogeneous (non-catalytic reforming) can produce relatively high H2 and light hydrocarbons yields, with high power conversion efficiency
- Efficiency comparable to ideal partial oxidation (power conversion efficiency ~80%)
- High flow rates can be reliable obtained
  - Up to 1 g/s fuel (about 40 kW reformate heating value)
- Larger surface area in recent designs
  - Provides long electrode lifetime.
- Relatively low electrical power consumption (300-600 W)

# Diesel plasmatron reformer Future improvements

- Fast response time under various conditions
  - Start up
- Plasma catalysis optimization for maximum hydrogen production
- Soot free operation over wide range of conditions
- Increased diesel fuel throughput
- Optimum flow rate and response capability for various applications
- Reduced electrical power consumption

## Summary

- Plasmatron reformers can provide substantial advantages in converting diesel fuel and other difficult to reform fuels (e.g. biofuels) into hydrogen rich gas
- Diesel plasmatron generated hydrogen rich gas could significantly improve prospects for successful use of NOx traps
- Diesel plasmatron technology could also be used for HC SCR and onboard ammonia production applications
- Significant progress in the performance of diesel plasmatron reformers has been made in the past year.