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PLASMA-ASSISTED SYSTEMS

For optimal efficiency, the plasma must:

§ Efficiently convert NO to NO2
§ Selective conversion, no acids of nitrogen or N2O

§ Create reactive hydrocarbons for downstream chemistry

§ Perform these functions at various temperatures, space velocities, and feed 
compositions

§ Have behavior that agrees with model of plasma chemistry that covers 
complexity of actual exhaust conditions

Which range of hydrocarbon species and temperatures can 
satisfy these requirements?

Objective: Use a non-thermal plasma to create a reactive 
gas mixture for lean NOx catalysis or particulate removal

Question:
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DRL REACTOR AND GAS ANALYSIS LAYOUT

• Dominant measurement tool is Fourier Transform Infrared 
Spectrometer (FTIR)
• Chemical Ionization Mass Spectrometer (CIMS) complements 
FTIR and allows for transient studies

PLASMA/CATALYST CHARACTERIZATION SYSTEM
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TEST  CONDITIONS AND APPARATUS

§ Focus on effects of temperature and HC species 
on NO2 and acetaldehyde production
§ Other products also measured 
§ Flow, power, and HC concentration also varied

Experimental Conditions:
• Single cell reactor
• Heat exchanger to heat incoming gas stream
• Rough mimic of light-duty diesel exhaust compositions

10% O2 4.5% H2O            5% CO2            200 ppm NO

T = 125° C to 475° C (varied at 50° C intervals)

500 ppm HC (varied from C2 to C5)
alkenes:  C2H4, C3H6, iso-C4H8, 1-C4H8, cis 2-C4H8
alkanes:  C2H6, C3H8, n-C4H10, iso-C5H12

Flow = 10 L/min through plasma; SV = 0.75 M h-1

Power = 17.5 J/L
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EFFECT OF HYDROCARBON SPECIES ON
NO-TO-NO2 CONVERSION EFFICIENCY

§ NO to NO2 conversion efficiency depends on temperature & HC species

• HCs required at all temperatures to maximize NO-to-NO2 conversion efficiency 
• Longer chain HCs are more effective
• Alkenes HCs more active for NO conversion at lower temperatures (optimal at 125°C)
• Alkanes more active for NO conversion at higher temperatures (optimal at 465°C)

200ppm NO, 500ppm HC, 5% CO2, 10% O2, 4.5% H2O,17.5J/L

0

20

40

60

80

100

0 100 200 300 400 500
Temperature (C)

N
O

 O
xi

d
at

io
n

 E
ff

.

No HC C2H6 C3H8 n-C4H10 Iso-C5H12

200ppm NO, 500ppm HC, 5% CO2, 10% O2, 4.5% H2O,17.5J/L

0

20

40

60

80

100

0 100 200 300 400 500
Temperature (C)

N
O

 O
xi

d
at

io
n

 E
ff

.

C2H4 C3H6 Iso-C4H8 1-C4H8 Cis-2-C4H8

Saturated HCs (500 ppm) vs. TemperatureUnsaturated HCs (500 ppm) vs. Temperature



Dynamics & Propulsion Innovation Center

EFFECT OF HYDROCARBON SPECIES ON
ACETALDEHYDE PRODUCTION

§ Acetaldehyde (CH3CHO) formation rates depend on the HC species

• Longer chain HCs are more effective in making acetaldehyde
• Unsaturated HCs show no temperature dependence
• Saturated HCs work better at higher temperatures
• Best formation rates occur using straight chain unsaturated HCs with isolated 

double bonds

Saturated HC (500 ppm) vs. TemperatureUnsaturated HC (500 ppm) vs. Temperature
200ppm NO, 500ppm HC, 5% CO2, 10% O2, 4.5% H2O,17.5J/L
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§ Aldehyde (CH3CHO, HCHO) formation rates depends on NO concentration

• Aldehyde formation increases with NO concentration
• NO2 is not involved with aldehyde formation
• Formaldehyde seen from all HC species

EFFECT OF NO CONCENTRATION ON
ALDEHYDE PRODUCTION

Effect of Varying NO and NO2 on CH3CHO/HCHO 
Formation and NO Conversion Efficiency

100ppm NO2, X ppm NO, 500ppm C3H6, 5%CO2, 10%O2, 4.5% H2O, 17J/L, 150° C
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MODELING: OH-REGENERATING REACTION SEQUENCES 
WITH ALKENES AND ALKANES

• Alkene sequence, early steps in a reaction cycle:

1) OH adduction at one end of previous double bond

2) O2 adduction as -O-O* at other end

3) NO reaction of form ROO* + NO => RO*+NO2

• Alkane sequence, early steps in a reaction cycle:

1) H abstraction of form RH + OH => R* + H2O

2) O2 adduction to form ROO* radical

3) NO reaction of form ROO* + NO => RO* + NO2

u Modeling of NO-to-NO2 and product formation rates
Ø Production of radicals done using ELENDIF and a low 
frequency barrier discharge model
Ø Subsequent gas phase chemistry done using CHEMKIN codes
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CONCLUSIONS FROM MODELING:
HC EFFECTIVENESS BY SPECIES AND TEMPERATURE

u Modeling observations on rates:
– Rates increase with carbon number for both alkenes and 

alkanes
– OH adduction on alkenes decreases with temperature
– H abstraction by OH increases with temperature for alkanes
– OH adduction on alkenes is faster than H abstraction by OH 

on alkanes, but difference drops as T increases.
u Product observations from modeling:

– Overall NO-to-NO2 rates increase with carbon number for 
both alkenes and alkanes

– At least C3‘s seem required to get much CH3CHO
– HCHO production from light HCs is almost ubiquitous

u These results agree at least qualitatively with experiment



Dynamics & Propulsion Innovation Center

OH Reaction (mostly adduction) Rates with Alkenes vs. T(C)
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• Alkene rates of OH adduction - that control NO2 formation - decrease
with temperature

• Model suggests ethene is less effective, butenes more effective than propene

OH REACTION RATE CONSTANTS VS. TEMPERATURE 
FOR ALKENES
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k(tot OH reactions) vs. T(C) for OH reactions with Alkanes
[rate constants from DeMore and Bayes (1999) and others]
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• Alkane rates of H abstraction by OH - that control NO2 formation -
increase with temperature 

• Another temperature effect: Increasing T => Increasing back reactions 
with NO2 => NO;  rate depends on HC concentration

OH REACTION RATE CONSTANTS VS. TEMPERATURE 
FOR ALKANES
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CONCLUSIONS AND IMPLICATIONS

• NO-to-NO2 conversion efficiency depends on temperature and HC 
species – both experimentally and in reaction modeling
> HCs required at all temperatures to maximize NO-to-NO2 conversion 
> Longer chain HCs are more effective
> Alkenes HCs more active for NO conversion at lower temperatures 
> Alkanes more active for NO conversion at higher temperatures

⇒ A combination of saturated and unsaturated HCs broadens the 
temperature window for good NO-to-NO2 conversion

• Formation of active hydrocarbons, such as acetaldehyde, also 
depends on HC species - in experiment and modeling
> Longer chain HCs (≥C3) make more acetaldehyde
> Acetaldehyde production by alkenes has little temperature dependence
> Acetaldehyde from alkanes increases with increasing temperature
> Acetaldehyde production increases with increasing NO concentration

⇒ Acetaldehyde concentration increases with temperature for a 
combination of alkenes and alkanes, with larger alkanes present

• Further comparisons of experiment and detailed modeling may lead to 
a successful model for a wide range of exhaust compositions
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