Status of APBF-DEC NOx Adsorber/DPF Projects

Brian West
Oak Ridge National Laboratory

Matthew Thornton and Shawn Whitacre
National Renewable Energy Laboratory

8th DEER Conference

San Diego, CA August 25-29, 2002

APBF-DEC* is Managed and Directed by Technical Committees

DOE, EPA, additive companies, automobile manufacturers, engine manufacturers, energy companies, emission control mfrs., Calif. agencies

APBF-DEC
Steering Committee

Unregulated emissions

Experimental design and data analysis

Fuel and lubricant provision

Fuels, engines, NO_x adsorbers, and diesel particle filters Fuels, engines, selective catalytic reduction and diesel particle filters

Lubricants

Communications

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

- *Advanced Petroleum-Based Fuels
- Diesel Emission Control

APBF-DEC Activity is Supported by Industry and Government Partners and Subcontractors

- DOE
 - NREL
 - ORNL
- API American
 Petroleum Institute
- EMA Engine Manufacturers Association
- MECA Manufacturers of Emission Controls Association
- ACC American Chemistry Council

- NPRA National Petrochemical and Refiners Association
- CARB California Air Resources Board
- SCAQMD South Coast Air Quality Management District
- EPA
- Battelle
- Ricardo

FEV

• ATL

SwRI

DRI

5 Fuels Testing Projects Being Conducted at Contract Laboratories

- NOx Adsorber/DPF
 - Ricardo Heavy-duty engine

SwRI – "Heavy-light duty" pickup truck

FEV – Light-duty passenger car

- Urea SCR/DPF
 - SwRI Heavy-duty engine
- Lubes
 - ATL Medium-duty engine

Objective: Examine fuel property effects on advanced diesel emission control systems.

Approach:

- Demonstrate low emissions potential of diesel engines equipped with advanced fuel, NOx adsorbers, DPFs, double-wall exhaust, etc
 - Three engine and/or vehicle platforms, two different exhaust system architectures on each platform
- Age systems with DECSE 8 and 15 ppm S fuel for up to 1500 hrs
 - Periodic emissions evaluations during aging
 - Periodic unregulated emissions measurement with 15 ppm S refinery product
- Examine other fuel properties

Each platform will determine effects of fuel properties on:

- NOx and PM reduction efficiency
- Fuel economy
- Other particle emissions
 - PM breakdown (SOF, sulfate, insolubles)
 - PAH and Nitro-PAH
 - Metals
- Other gas phase emissions

- THC, NMHC, CO, CO₂

Gas phase PAH and nitro-PAH

Nitroxyalkanes

Benzene

1,3 butadiene

Formaldehyde

Acetaldehyde

 $-N_2O$

- SO₂

 $-H_2S$

Heavy-Duty Project Being Conducted at Ricardo

- 15 liter ISX engine supplied by Cummins
 - DOHC, 4 valves/cylinder, central unit injector
 - Rated at 475-500 hp, 1650
 lb.ft torque
 - Fitted with EGR system,
 compliant with 2002/2004
 standards
- Cummins is supporting control system interface
- HD FTP and 13-mode S.S.

Heavy-Duty Single Leg Adsorber System

- Catalysts supplied by MECA member
- Single leg NOx Adsorber system delivered
- Increased EGR, incylinder postinjection, and in-pipe fuel injection will be used for regeneration

Heavy-Duty Dual Leg Adsorber System

- Catalysts supplied by MECA member
- Dual leg NOx
 Adsorber system
 expected 8/2002
- Rich exhaust conditions will be achieved by in-pipe fuel injection

Heavy-Duty Status/Plans

- Currently tuning/optimizing ECS A (single leg system). Continue through October '02
- Baseline engine-out testing: October 2002 (includes toxic/unregs with BP15)
- Delivery of ECS-B (dual leg system) expected this month. Will tune/optimize through December '02
- Aging and performance testing: Jan-Oct 2003
- Other fuel properties: Fall 2003

Pickup/SUV project being conducted at Southwest Research Institute

- 2002 Chevrolet Silverado
 2500 HD pickup
- 6.6 liter Duramax Diesel
 - 300 hp @ 3100 rpm
 - Center-mounted Turbocharger
 - Charge Air Cooled
 - Bosch Common Rail Fuel Injection
 - 4V Aluminum Heads
 - 2002 CA Calibration
- FTP, US06, and HFET cycles

Pickup/SUV Project Single Leg Adsorber System (ECS-A)

Single In-Line
Emissions Control System

Pickup/SUV Project Dual Leg Adsorber System (ECS-B)

Dual-Branch
Emissions Control System

Exhaust Temperatures Over the Light-duty FTP present a significant challenge

Transient engine dyno test emulates the light-duty chassis dynamometer FTP

Engine dyno test produces nearly same NOx as chassis dynamometer test

Engine dyno exhaust temperature also agrees well with chassis test

More aggressive EGR has yielded significant engine-out NO_X reduction

Pickup/SUV Project Status and Plans

- All catalysts on hand
- Currently tuning/optimizing systems (both single and dual leg systems). Continue through November '02
- Baseline engine-out testing: October 2002 (includes toxic/unregs with BP15)
- Aging and performance testing: Jan-Dec 2003
- Other fuel properties: Fall 2003

Passenger car project being

conducted at FEV

 Audi A4 Avant platform

- 1.9 liter engine
 - Bosch common-rail fuel injection
 - Central vertical injector
 - 4 valves/cyl
 - 100 kW @ 4000 rpm
 - ASCET-SD controls
- FTP, US06, and HFET cycles

Both passenger car emission control systems are single leg configuration

In addition to vehicle, three additional engines and engine test cells dedicated to this project

Test Cell 4

Test Cell 5

Passenger Car Project Status and Plans

- Completed prototype engine builds, vehicle set up
- First sets of catalysts on hand (both systems)
- Developing transient dynamometer test to emulate chassis tests
- Currently tuning/optimizing systems.
 Continue through December '02
- Baseline engine-out testing: October 2002 (includes toxic/unregs with BP15)
- Aging and performance testing: Jan-Nov 2003
- Other fuel properties: Spring 2004

Acknowledgements

- Department of Energy, FreedomCar and Vehicle Technologies Office, for financial support of contracts and ORNL/NREL
- APBF-DEC partners for financial and in-kind support
- Ricardo, SwRI, and FEV for their hard work and commitment to the program
- NOx adsorber/DPF Tech Team members and their companies for their in-kind efforts

Questions?

APBF-DEC Contacts:

Brian West,

865-946-1231

– westbh@ornl.gov

Matthew Thornton,

303-275-4273

- matthew_thornton@nrel.gov

Shawn Whitacre,

303-275-4267

shawn_whitacre@nrel.gov

