Cummins/DOE Light Truck Diesel Engine Progress Report

August 2002

- Partnership, Cummins and U.S. Department of Energy
- Focus
 - Development of technologies that will result in a product in the near term
 - Emissions
 - ~ U.S. Tier 2 6000-8500 lb GVW
 - ~ NO_x = 0.07 g/mi; PM = 0.01 g/mi
 - Fuel economy 50 percent MPG improvement over 1997 gasoline powered vehicle it replaces
- Acknowledgment
 - Contractual funding from DOE
 - Vehicle and installation design assistance from Dodge Truck Engineering
 - Engine Development Team at Cummins

Light Truck Major Segments

8.4M Vehicles

Sport Utility Vehicles 39%

Pickup Trucks 39%

2001 Sales

V Family Goals and Status

Description	Actual (st		
Description	V6	V8	
	Tier 2 Interim demonstrated,		
Emissions	Tier 2 final, met on laboratory basis.		
	68.7 Interior, Cruise	65.0 Interior, Cruise	
Noise, dBa	@ 65 mph, Durango	@ 65 mph, BR 1500	
	22.1 Combined,	21.7 Combined,	
Fuel Economy, MPG	Durango (+60%)	BR1500 (+60%)	
Quality/Reliability	Not yet evaluated.		
Rated Speed	4000 rpm (5000 max)		
	4000 hr Total Development Testing		
Useful Life km(mi)	(equivalent usage >965,000(600.000)		
	11.9 sec, 0-60 mph,	9.95 sec, 0-60 mph,	
Performance	Durango	BR1500 4x4	
Dianlassmant liter	4.2	5.0	
Displacement, liter	4.2	5.0 224(300) @ 4000	
Power, kW(hp) @ rpm	177(237) @ 3600	Interim target met.	
Torque Peak, Nm(ft-lb)	475(350)	623(460)	
		·	
Warm-Up	Not yet evaluated.		
Serviceability	No Adjustments		
	Diesei Tuer		
Cold Start	Not yet evaluated.		

Meets Goal

Partially Meets Goal; Plan in Place

Light Duty Automotive Engine - V6

Light Truck Diesel Subsystem Description

<u>Subsystem</u>	Description		
Configuration	90° V		
Displacement	4.2 L V6 5.6 L V8		
Bore and Stroke	94 X 100 mm		
Valvetrain and Drive	Single overhead cam, chain-driven		
Valve System	Four valves per cylinder with hydraulic lash adjustment		
Fuel System	High-pressure common rail (HPCR)		
Control System	Full electronic		
Emissions Control	Modulated-cooled EGR plus deNOx catalyst (Interim)		
	4-Way Catalyst (Tier 2, Bin 5)		
Aspiration	Wastegated turbocharged		
Intercooling	Vehicle mounted air-to-air		
Block	Cast iron, thin-walled		
Head	High temperature alloy aluminum		
NVH Control	Deep skirted block, with bedplate		
Accessories	Common automotive V-8 gasoline		
Accessory Drive	Single serpentine belt, self-adjusted		

Demonstrated Emissions Interim Results

Demonstrated Emissions Tier 2 Results

Demonstrated Fuel Economy

Typical Results

	<u>City,</u> mpg*	<u>Highway,</u> mpg*	<u>Combined,</u> <u>mpg*</u>	<u>Combined</u> gal/mi	<u>CO2</u>
Dodge Durango					
- Gasoline	12	17	13.8	0.072	
- Diesel	20.3	25.0	22.1	0.045	
			+60% Improve	37% Reduction	27% Reduction
Dodge Ram 1500					
- Gasoline	12	16	13.5	0.074	
- Diesel	19.8	24.6	21.7	0.046	
			+61% Improve	38% Reduction	

*Adjusted values for vehicle labeling

Noise Test Results V8 in Ram 1500

Competitive Noise Comparison

2000 RPM, Full Load

Acceleration Test Results V8 in Ram 1500

Current Focus

- What needs improvement in this picture
 - Emission System
 - ~ Lower Cost, Simpler
 - ~ More Robust
 - ~ Compact
 - ~ Reliability
 - ~ Fuel Variability Tolerance
 - Overall System
 - ~ Improved Control of Variability
 - ~ Very Low (Precise) Emissions
 - ~ Sensor Technology Applied to Diesels /

Cost/Robustness

÷

Variability

Prime Path System with 4-Way Catalyst

Condition	Engine Out	Combustion Condition		
NO _x Regen	Rich	al ent	Pilot + Main Injection	
Soot Regen	Lean	herma nagem +	Pilot + Main + Post	
Sulfur Regen	Rich	Mar	Pilot + Main + Post	

Variability

Variability Example

- Engine condition 1500 rpm, 2.6 bar BMEP (~18 hp for V6-4.2)
- Consider a nominal target of 45% EGR

	<u>EGR,%</u>	<u>NO_x,g/hp-hr</u>
- All cylinders nominal	45	0.1
- +/- 10% EGR target	40	0.30
- +/- 5% EGR target	43	0.18

EGR Measurements

V8 EGR Port-to-Port Distribution

Sources of Variability

- EGR Distribution
- Swirl Port-to-Port
- Piston Bowls
- Spray Angle
- Spray Hole Size
- Shot-to-Shot Fueling & Timing
- Cylinder-to-Cylinder Air Flow
- Fuel
- Etc.

- Light Truck Diesel Family continues to show promise
- Fuel economy advantage is clear, approaching 60 percent
- Performance and sociability are gasoline-like
- Interim Tier 2 emissions, met using known technology
- Final Tier 2 emissions, demonstrated using advanced aftertreatment devices
- There is a path to market for the Light Truck Diesel
 - Cost/Robustness issues resolved
 - Variability issues minimized