

Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction

John Hoard

Ford Research Laboratory

Dave Brooks

DaimlerChrysler

Steve Schmieg

General Motors R&D

Charles H.F. Peden, Steve Barlow, Russ Tonkyn *PNNI*

For Presentation at DOE Diesel Engine Emission Reduction August 28, 2003

Introduction

- Engine dynamometer evaluation of plasma-catalyst system
 - 3-stage plasma-catalyst system over 90% on bench
 - Downstream of (non-catalyzed) DPF
- Laboratory follow up and analysis
- CRADA project
 - USCAR LEP
 - Ford, GM, DaimlerChrysler
 - PNNL
- Tests at FEV and Ford Research Lab
- Plasma and catalyst hardware from PNNL
 - Catalyst modified from supplier samples

Engine Description

Engine Process - Diesel

Engine Type - 4-stroke

Number of Cylinders - 4

Total Engine Displacement cm³ 1943

Bore Diameter mm 82

Stroke mm 92

Stroke/Bore Ratio - 1.122

Compression Ratio e - 19:1

Maximum Cylinder Pressure bar 150

Squish Height mm 0.8

Piston Bowl Volume cm³ 20.8

Valves per Cylinder - 4

Swirl Level - 1.8 - 1.9

Maximum Boost Pressure bar 2.05

Rated Power @ 4200 rpm kW 81

Plasma-Catalyst Unit

Plasma Unit

Tube Array Reactor

BaY with Hexane Reductant

BaY Catalysts with Hexane Reductant

Good initial conversion using hexane reductant 92% NOx conversion for several hours at 230°C 6K space velocity (very low!)

BaY with Fischer-Tropsch

Good initial conversion using F-T reductant
But gradual drop with time
75% NOx conversion peak, dropping to ~50%

BaY/Al₂O₃ with Diesel

BaY+Alumina, Diesel Reductant

Good initial conversion using diesel fuel reductant Rapid drop with time

Catalyst Visual

Catalyst coating uneven
Results in flow maldistribution
Increases effective space velocity

General Observations

- Good initial conversion
 - Approaches bench test data
- BaY performance degraded rapidly with F-T or diesel reductant
 - Catalysts discolor
 - Conversion largely recovered by baking 500°C in air

Post Mortem Tests

- Cores cut from engine test catalyst brick "BaY1" – front catalyst
- Gas Bench (single stage plasmacatalyst)
 - 200°C activity before and after heating
 - Efficiency recovery with C₃H₆ ramps
 - C₃H₆ versus diesel reductant
 - Recovery after diesel fuel exposure
- Thermogravimetric (TG)

Thermal Cycle

- Would catalyst recover in normal driving (without high temperature)?
- Tested engine-used core in normal gas blend with "new" thermal cycle
 - Reductant is C₃H₆ C₃H₈
- Gradual efficiency recovery

Thermal Cycle

- Temperature values cover ~80% of FTP cycle
- dT/dt low
- 30 minute dwell to assure "steady" value at each temperature
- 3 ramp rates but all are "slow"
- 206 minutes = 3 hours 26 minutes per cycle

Conversion versus Time

Efficiencies Versus Time

- Gradual recovery of NOx conversion
- Previous test of PNNL in-situ BaY "fresh" core averaged 45%
- Fraction of exit NOx which is NO gradually rises

Cycling Conclusions

- Efficiency gradually recovers
 - Maximum temperature 300°C
 - Propene/propane reductant
 - Color at end is light tan
 - Takes a long time!

Bench Test with Diesel Fuel

- What caused the "coking" and can we duplicate it?
- Same sample catalyst
- Pumped diesel fuel onto heated wick
 - Nominal 1500 ppmC₁
 - Very messy, large storage in lines!
 - Long settling times
 - Replaced propene/propane reductant

Conversion Results

	NO	NO2	SumNOx	FID	CLA	
Input concentration	250	0	250	1300	252	
After plasma-catalyst	190	11	205	1040	213	
Conversion	24%		18%	20%	15%	

15-18% apparent NOx conversionHC conversion ~20%Catalyst turned brown within an hour

Repeat Cycling

- Does it recover the same way?
- Following test with diesel reductant
- Ran same cycles with propene/propane reductant

Efficiency Recovery

Conclusions

- Diesel fuel as a reductant causes deactivation very similar to engine testing
- Catalyst recovers when heavy HC removed, although slowly
- Deactivation is rapid
- How does this happen?

TG Analysis

Sample	Gas during test	Initial appearance	Finial appearance
L3A	N ₂	Brown	Black
L3B	Air	Brown	White
L3B diesel	Air	Tan	White
L3A	Air	Black	White

Air after N₂

Heating in air, following heating in N₂

Heating in air (reference)

Diesel Fuel

Heating in air after soak in diesel fuel

Heating in air (reference)

TG Conclusions

- Low temperature desorption
 - ~100-250°C
 - Diesel fuel condensed on surface
 - Present in air or N₂
- High temperature desorption
 - Not present in N₂
 - Oxidation of adsorbed "HC" species
- Which affects conversion?
 - Efficiency recovers after cycling < 300°C
 - Thus, low temperature portion is most critical

Conclusions

- High efficiency of bench testing is possible for short times in engine exhaust
- Diesel reductant deactivates catalyst rapidly
- Thermal regeneration is possible but slow

Acknowledgements

- This work was performed as part of a CRADA with the USCAR Low Emissions Technologies Research and Development Partnership (LEP), Pacific Northwest National Laboratory, and the US Department of Energy Office of Advanced Automotive Technology.
- Engine testing was performed at FEV, Auburn Hills, Michigan. Thanks to Falk Beier, Dean Tomazick and their staff.