The California Demonstration Program for Control of PM from Diesel Backup Generators (BUGs)

U.S. Department of Energy's

9th Diesel Engine Emissions Reduction Conference

Newport, Rhode Island

August 24-28, 2003

J. Wayne Miller, Kent Johnson, John Lee, Marla Mueller, Bonnie Soriano, Bill Welch

Supporting contributors: David R. Cocker III, Kathalena Cocker, Jim Lents, Don Pacocha, Sandip Shah, Alex Santos, Peggy Taricco

University of California, Riverside

Bourns College of Engineering

Center for Environmental Research and Technology

Today's Topics

- Current state of understanding about emissions from diesel backup generators.
- Approach to measurement of PM emissions.
- Background on California PM demonstration program for diesel backup generators.
- Emission results for:
 - Uncontrolled sources
 - Controlled sources
- Future work

EPA's AP-42 Emission Factors - Small Diesel

	SMALL DIESEL (< 600 hp)					
	Emission Factor	Emission Factor	Emission Factor	Emission		
	(lb/hp-hr)	(g/kW-hr)	(lb/MMBtu)	Factor		
Pollutant	(power output)	(power output)	(fuel input)	Rating		
NOx	0.031	18.85	4.41	D		
CO	6.68E-03	4.06	0.95	D		
SOx	2.05E-03	1.25	0.29	D		
PM_{10}	2.20E-03	1.34	0.31	D		
CO_2	1.15	699.20	164	В		
Aldehydes	4.63E-04	0.28	0.07	D		
TOC		0.00				
Exhaust	2.47E-03	1.50	0.35	D		
Evaporative	0.00	0.00	0.00	Е		
Crankcase	4.41E-05	0.03	0.01	Е		
Refueling	0.00	0.00	0.00	Е		

UCR's Mobile Emission Lab

Schematic of UCR's Heavy-duty Mobile Emission Laboratory (MEL)

Gas Measurements: CO_2 %, O_2 %, CO ppm, NO_x ppm, THC ppm, CH_4 ppm.

Other Sensor: Dew Point, Ambient Temperature, Control room temperature, Ambient Baro, Trailer Speed (rpm), CVS Inlet Temperature. Dilution Air: Temperature, Absolute Pressure, Throat ΔP , Baro (Ambient), Flow, Dew Point (Ambient). Exhaust: Temperature, ΔP (Exhaust-Ambient), Flow.

Engine Broadcast: Intake Temperature, Coolant Temperature, Boost Pressure, Baro Pressure, Vehicle Speed (mph), Engine Speed (rpm), Throttle Position, Load (% of rated).

Schematic of Secondary Sampling System

Inside the Mobile Laboratory

Verification of Secondary System for Measuring PM

- Verification testing performed at CARB HDDT test facility – March 19, 2002
- 2000 Freightliner Tractor, CAT C-15
- CARB provided the difference in measurements between CARB/UCR labs

Test Cycle	THC	СО	NO _x	CO ₂	PM
Hot UDDS	12%	18%	8%	2.7%	0.1%

Objectives for Diesel Backup Generator (BUGs) Project

- Cooperative project of the California Energy Commission and the California Air Resources Board
- Measure emissions from representative BUGs based on:
 - Size (>300kw)
 - Market share
 - Age/emission standards
- Measure "real world" emissions
 - Regulated gaseous emissions
 - Regulated particulate matter (PM_{2.5}) emissions
 - Speciated VOCs and SVOCs, including toxics for selected units
- Develop emission factors for AP-42.
 - Uncontrolled and controlled emission factors.

PM Demonstration-Test Matrix

Size Ranges

- 15 engines (300 to 750 kW)
- 3 engines (1000 to 2000 kW)

Age Ranges

- Pre 1987
- 1987-1996
- Post 1996

Manufacturers

- Caterpillar
- Cummins
- Detroit Diesel Corporation

PM Control Technologies Selected for Demonstration

- Emulsified Fuel
- Diesel Oxidation Catalysts
- Passive Filters
- Active Filter

University of California at Riverside	
Field Testing of Backup (BUGs)	Generators
	Center for Environmental Research and Technology

Testing Protocol for Backup Generators

- 1. Cold start/idle for 30 minutes
- 2. ISO-8178B -- Type D2 constant speed

Mode	1	2	3	4	5
Speed	rated speed				
Load	100%	75%	50%	25%	10%
Weighting					
Factor	0.05	0.25	0.3	0.3	0.1

Example:
$$GAS_x = \frac{\sum_{i=1}^n M_{GASi} \times W_{Fi}}{\sum_{i=1}^n P_i \times W_{Fi}}$$

 GAS_x = overall emission factor of a given pollutant (lb/hp-hr or g/kW-hr) = emission factor of given pollutant at Mode i Where:

= load value at Mode i + auxiliary loads

Cold Start Emissions for the Detroit 92 at VAF

PM_{2.5} Emission Factors

PM_{2.5} Emission Factors: Diesel-water Emulsion with Newer BUG

PM_{2.5} Emission Factors: Diesel-water Emulsion with Older BUG

Maintenance Cycle

Cold Start Temp Profile for a 3406C CAT BUG

Diesel Oxidation Catalyst

PM_{2.5} Emission Factors with Diesel Oxidation Catalyst

Measurement of Elemental and Organic Carbon

Passive Diesel Particle Filter

Control of New BUG with DPF

Active Diesel Particle Filter System

Center for Environmental Research and Technology

Control of Older Two-stroke BUG

Control of Older BUG

Control of Older BUG

Looking Ahead

- Test larger (>1,000 hp) BUGS in uncontrolled mode.
- Complete demonstration of PM control for ongoing activities including:
 - Control of older 2-stroke diesel engines with a fuel borne catalyst and diesel oxidation catalyst.
 - Control with fuel borne catalyst additive and bare filter.
- Demonstrate combined system of PM control plus selective catalytic reduction (SCR) for control of PM and NOx.
- Transition of data to EPA's AP-42 tables for general use.

Conclusions

- Results showed that emission factors for the uncontrolled BUGs were less than in the AP-42 tables.
- With control technology, the PM emissions can be reduced from 15% to 99.8+%.
- Selection of the control technology depends on a number of factors, including PM characterization.

Thank You Sponsors!

- US Environmental Protection Agency (US EPA)
- California Air Resources Board (CARB)
- California Energy Commission (CEC)
- South Coast Air Quality
 Management District (AQMD)
- Detroit Diesel Corporation
- International Truck & Engine

- Caterpillar
- Cummins
- Mack
- Volvo