DAIMLERCHRYSLER DaimlerChrysler Powersystems

Advanced Diesel Engine and Aftertreatment Technology Development for Tier 2 Emissions

R. Aneja, B. Bolton, B. Oladipo, Z. Pavlova-MacKinnon, A. Radwan

Detroit Diesel Corporation

"Dieselization" of Vehicle Fleet Offers Significant Reduction to U.S. Transportation Energy Use

Fig. 2.2. Trucks account for increasing highway transportation energy use. *Sources: EIA Annual Energy Outlook 2000*, DOE/EIA-0383 (2000), December 1999. *Transportation Energy Data Book: Edition 19*, DOE/ORNL-6958, September 1999.

In 1999 Many Questioned the Diesel Engine's Potential to Achieve Future

Tier 2 Emissions and the Resulting Fuel Economy Improvement

System Development Methodology

DAKOTA Light Truck Platform

2001 Dakota Quad Cab Sport 4 x 2 Re-powered with DDC DELTA 4.0I V6 Twin VG Turbocharged, Common Rail Injection 235 hp @ 4000 RPM

DEER August 24 - 28, 2003

Integrated Emissions Reduction Roadmap Light Truck / SUV Platform

Integrated Emissions Reduction Roadmap Light Truck / SUV Platform

0.11 Engine Controls Strategy – Advances in CLEAN Combustion® 0.10 Engine Controls Strategy Integrated with Aftertreatment 0.09 Particulates (g/mile) 0.08 Tier 2 Bin 10 0.07 Engine Out Tier 2 Bin 10 0.06 Bin 9 0.05 0.04 Tailpipe Out Tier 2 Bin 6 0.03 45% Fuel Economy Benefit Compared to Gasoline Baseline 0.02 No NH₃ Slip Bin 6 0.01 Bin 7 Bin 5 Bin 8 0.00 0.3 0.4 0.5 0.7 0.0 0.1 0.2 0.6 0.8 0.9 1.0 NOx (g/mile) DaimlerChrysler Powersvstems

DEER August 24 - 28, 2003

Presented at DEER 2002

Integrated Emissions Reduction Roadmap Light Truck / SUV Platform

Accomplishments since DEER 2002

DEER August 24 – 28, 2003

7

DEER August 24 - 28, 2003

DaimlerChrysler Powersvstems

DEER August 24 - 28, 2003

DEER August 24 – 28, 2003

DEER August 24 - 28, 2003

Fuel Economy Recovery Potential Light Truck / SUV Platform

DEER August 24 - 28, 2003

Fuel Economy Recovery Potential Light Truck / SUV Platform

DaimlerChrysler Powersvstems

DEER August 24 - 28, 2003

Integrated Emissions Reduction Roadmap Passenger Car Platform

Integrated Emissions Reduction Roadmap Passenger Car Platform

Integrated Emissions Reduction Roadmap Passenger Car Platform

DEER August 24 - 28, 2003

Integrated Emissions Reduction Roadmap Passenger Car Platform

DEER August 24 - 28, 2003

Integrated Emissions Reduction Roadmap Passenger Car Platform

DEER August 24 - 28, 2003

Fuel Economy Recovery Evolution Passenger Car – FTP 75

Data Demonstrates MPG can be Selectively Recovered

DEER August 24 - 28, 2003

Summary

- Tier 2 Bin 3 Emissions Demonstrated for Light Truck / SUV and Passenger Car Platform with Integrated Diesel and Aftertreatment (CSF and Urea SCR) System
 - » Tier 2 Demonstrated for the Light Truck Platform over the US06 Cycle
 - » 41% City Fuel Economy Advantage Over Light Truck Gasoline Baseline
- Emissions Reduction Attributed to
 - » Advanced Combustion Technology
 - ✓ Near Bin 9 Engine Out NOx
 - » Engine and Aftertreatment Integration
 - Controlled NO2/NOx Ratios at SCR Inlet
 - High Fidelity Urea Mixing
 - » Urea Injection Control Strategy
 - Minimize Risk of NH3 Slip while Maximizing NOx Reduction
- Development Methodology Emphasizes Integrated Testing & Analysis

DEER August 24 - 28, 2003

Conclusions

- Tier 2 Technology Demonstrated
 - » FTP75 and US06
- Drivers for Commercialization Potential
 - » Reduce AT System Complexity by Increased Engine/AT Integration
 - Sophisticated Controls Technology Integration
 - Multi-mode Combustion Strategy
 - Soot Filter Regeneration Strategy
 - Urea Reductant Injection Strategy
 - » Infrastructure
 - Low Sulfur Fuel (<15 ppm)
 - Urea Reductant
 - » Measurement Techniques & Emissions Variability at Tier 2 Levels
 - » Effect of Aging or Device Variability on Aftertreatment Performance
- Integrated Test/Analytical Approach is Valuable and Supports Overcoming the Technical Challenges Referenced Above
 - Fundamental Aftertreatment Data is a Key Need Pacing the Application of These Tools/Methodologies

