Design and Development of e-Turbo[™] for SUV and Light Truck Applications

Steve Arnold, Craig Balis, Etienne Poix, Tariq Samad, and S. M. Shahed Honeywell Turbo Technologies

Diesel Engine Emissions Reduction Conference August, 2004

Acknowledgments

US DoE John Fairbanks Gurpreet Singh

- Base Integration of Turbocharger and Electrical Machinery in Suitable Sizes
 - Background/Benefits
 - Status from 2003 DEER Conference
 - Progress Gen 1, 2 and 3 e -Turbo
 - Define Benefits/Issues "Go/No-Go" Criteria for Larger Turbos
- Variable Geometry Compressor to Realize Full Benefits of Electrical Assist
- Innovative Low Inertia Design to Reduce Demands of Electrical Power - to be Integrated with Electrical Machinery after Proof of Concept
- Integrated Control System Development for EGR, Electrical Machinery and VNT Vane Position

- Base Integration of Turbocharger and Electrical Machinery in Suitable Sizes
 - Background/Benefits
 - Status from 2003 DEER Conference
 - Progress Gen 1, 2 and 3 e -Turbo
 - Define Benefits/Issues "Go/No-Go" Criteria for Larger Turbos
- Variable Geometry Compressor to Realize Full Benefits of Electrical Assist
- Innovative Low Inertia Design to Reduce Demands of Electrical Power - to be Integrated with Electrical Machinery after Proof of Concept
- Integrated Control System Development for EGR, Electrical Machinery and VNT Vane Position

Background: e-Turbo™: Levels/Benefits

Three Levels of System Benefits

- Performance Eliminate Turbolag
- Aggressive Engine Downsizing
- Air Management System
 - Synergy with EGR, Fuel Injection, Aftertreatment, Vehicle Power Demands

M/G - Supplier Developed 12 V DC Input 2 kW Induction Motor/Generator Controller - Supplier Developed

Performance Benefits Level I - Eliminate Turbo-lag

Transient Time-to-Boost Improvement

Performance Benefits – Level II Engine Rightsizing

Status from 2003 - Critical "Go/No-Go" Criteria

- High-speed motor/controller system to provide up to 1.4kW mechanical power at speeds up to 175kRPM total system efficiency > 60%.
- Turbocharger bearing system to carry the extra mass and length while still retaining acceptable shaft rotor-dynamic behavior up to 225kRPM.
- Turbocharger and motor cooling system to protect the motor from the extreme turbocharger thermal environment as well as from self-heating.
- Compressor aerodynamics to deliver the extra boost without suffering from surge ("stall") during the transient.

Designs Successfully Establish Feasibility

Fundamental e-Turbo Technical Challenges

Design	Target	Why	Previous	Improved
Criterion			Design	Design
Speed Limit	> 225 Krpm	Aerodynamic	< 190,000 rpm	Successful
		performance	 Unstable bearing 	
			Weak motor rotor	
Motor Torque at	0.25 Nm	Boost at low	< 0.15 Nm	Successful
low speed		engine speed		
High speed	1200-1400 W	Boost	< 1000 W	Successful
power		performance		
Motor speed at	> 175,000 rpm	Boost up to	< 150,000 rpm	Successful
target power		2000 rpm		
		engine speed		
Controller	> 70%	Electrical	25-50%	Close
Efficiency		power impact		
Motor	Normal duty cycle	Duty cycle	 Limited usage 	Successful
temperature	Survival at all	requirements	• Failure at severe	
	"off" conditions		"off" conditions	

Technical Feasibility Demonstrated

- Base Integration of Turbocharger and Electrical Machinery in Suitable Sizes
 - Background/Benefits
 - Status from 2003 DEER Conference
 - Progress Gen 1, 2 and 3 e -Turbo
 - Define Benefits/Issues "Go/No-Go" Criteria for Larger Turbos
- Variable Geometry Compressor to Realize Full Benefits of Electrical Assist
- Innovative Low Inertia Design to Reduce Demands of Electrical Power - to be Integrated with Electrical Machinery after Proof of Concept
- Integrated Control System Development for EGR, Electrical Machinery and VNT Vane Position

Progress with turbomachinery design and electrical machinery integration continues

Three areas of results reported

- Steady state efficiency and torque
- Transient torque
- Electrical power generation

Steady-State Efficiency

- Engine efficiency w e -Turbo off: 2% @ 2000-2800rpm
- Because engine delta P is higher
- Phenomenon more sensitive when engine speed decreases

e-Turbo[™] efficiency slightly lower

Steady-State Torque w/o Electric Activation

With recalibration, baseline torque level is recovered

Recalibration Methodology

e-Turbo[™] activation provides more air to the engine. So, to get overtorque, this higher airflow needs a fuel recalibration:

Steady-State Torque with Electric Activation

-Electric activation provides a high increase of torque: 33-27-12% more than Step 3 at 1000, 1200, and 1400rpm 43-32-21% more than e-Turbo[™] off (0%)

Transient Response @1250 rpm

Electric Power Generation

- Efficiency effects
 - The BSFC increases less if exhaust enthalpy is high
 - Between 2000-3000rpm:
 - +1% for 400W @ 200Nm
 - +2% for 400W @ 100Nm
- No major impact on NOx, HC, CO emissions
- Unable to quantify the BSFC variation when load and fuel flow are low
- Unable to generate if exhaust enthalpy is too low (example 2000-25Nm)

Electric power generated (Watts)

- Generating electricity is possible if load isn't too low
- Cost around 1% of BSFC to generate 200W @ 2000rpm-100Nm
- It has no effect on emissions

Rough Comparison with Alternator

- 250W of electrical power output
- Alternator efficiency: 67-61-59% @ 1000-2000-3000rpm
- e-Turbo[™] approximate results: from previous slide

Depending on the	Increase of BSFC (%)		Operating point	
operating point:	w e-Turbo	w alternator	load (Nm)	rpm
	No power	14,3	25	1000
-e-turbo [™] unable to	No power	7,1	50	1000
generate	No power	3,6	100	1000
9	No power	7,8	25	2000
a turba TM battar than	better	3,9	50	2000
-e-turbo ···· better than	better	2,0	100	2000
an alternator	better	1,0	200	2000
	better	5,4	25	3000
-e-turbo [™] as good as	better	2,7	50	3000
an alternator	same	1,3	100	3000
	same	0,7	200	3000

* The variations of BSFC are lower than the noise in fuel consumption measurements

1. Steady-state torque increase

- 43% @ 1000rpm (compared to e-Turbo[™] off)
- Could be higher if lambda value was lower

2. Better time to torque

- Gain of around 70% between 1000-1500rpm (compared to e-Turbo[™] off)
- Could be higher if lambda value was lower
- **3.** Electrical power generation ability
 - Seems to have a better efficiency than an alternator
 - However, generation is limited to certain conditions

Reminder: Benefits of Engine Rightsizing not Included in the Previous Discussion

- Base Electrical Machinery Development for Integration into Turbochargers of Suitable Sizes
 - Background/Benefits
 - Status from 2003 DEER Conference
 - Progress Gen 1, 2 and 3 e Turbo
 - Define Benefits/Issues "Go/No-Go" Criteria for Larger Turbos
- Variable Geometry Compressor to Realize Full Benefits of Electrical Assist
- Innovative Low Inertia Design to Reduce Demands of Electrical Power - to be Integrated with Electrical Machinery after Proof of Concept
- Integrated Control System Development for EGR, Electrical Machinery and VNT Vane Position

Flow Stability at Low Speeds

Variable Geometry Compressor Concept

- Base Electrical Machinery Development for Integration into Turbochargers of Suitable Sizes
 - **Background/Benefits**
 - Status from 2003 DEER Conference
 - Progress Gen 1, 2 and 3 e Turbo
 - Define Benefits/Issues "Go/No-Go" Criteria for Larger Turbos
- Variable Geometry Compressor to Reglize Full

Benefits of Electrical Assist
Innovative Low Inertia Design to Reduce Demands of Electrical Power - to be regrated with Electrical Machinery after Proof of Concept

 Integrated Control System Development for EGR, Electrical Machinery and VNT Vane Position

- Base Electrical Machinery Development for Integration into Turbochargers of Suitable Sizes
 - Background/Benefits
 - Status from 2003 DEER Conference
 - Progress Gen 1, 2 and 3 e Turbo
 - Define Benefits/Issues "Go/No-Go" Criteria for Larger Turbos
- Variable Geometry Compressor to Realize Full Benefits of Electrical Assist
- Innovative Low Inertia Design to Reduce Demands of Electrical Power - to be Integrated with Electrical Machinery after Proof of Concept
- Integrated Control System Development for EGR, Electrical Machinery and VNT Vane Position