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Aerodyne Aerosol Mass Spectrometer (AMS)

Mike Alexander, PNNL, Doug Worsnop, Aerodyne
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Figure 1: Diagram of AMS

Particle Distribution, size-resolved composition, soon single particle
Quantitative for organics, semivolatiles

Truly Portable, Fast Response for transients: 1 second



Mass Concentration (ug m-3)
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Quantitative, Wide dynamic range
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Species
Others 169 £ 0.4

Ammonium 0.456 + 0.02
Nitrate 0.175 £ 0.01
Sulfate 1.03 £ 0.05
Oraganics 78.1 £ 0.1

Oil 78.7 £ 0.2
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Aerodynamic Diameter (nm)
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Fast enough (soon) to follow engine cycle



Single Particle Laser Ablation Time-of-flight Mass
Spectrometer (SPLAT-MS) Alla Zelenyuk PNNL, Dan Imre

SPLAT-MS
Size, density and molecular
composition of individual

particles in real-time.

Aerodynamic particle lens.

Optical detection provides
particle velocity/size.

IR laser pulse evaporates
particle

UV laser ionizes for TOF-MS.
20 particles/s

(100 in new SPLAT)

@ Green laser for detection
@ Infra Red laser for evaporation
@ UV laser for ionization



Single Particle Size and Composition Measurements

Cluster Analysis to identify particle groups

Soot, Fe

s o fuel i
PAH Soot, org acid

All soot

All soot
78% | 63%
Soot, engine WET
Soot, sulfate
50nm-200nm >200nm

Preliminary analysis of data obtained from Off-road indusirial vehicle engine




Diesel soot density and fractal dimension

Aerodynamic size depends on geometry and mass (density)
Mobility size depends only on geometry
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NEW SPLAT: Small, portable, better:
Size, composition, shape, density, soot content, and

hygroscopicity of individual particles
m Size range — '

40 nm to 3 micron

m Rate — 100 particles/sec
m Composition — IR/UV
m Shape — light scattering

m Soot Content — Laser-induced
incandescence




Chemical Characterization of
Phosphorous Containing Soot Particles

Z Yang?, A Laskin!, B Bunting?, J] Cowin!,
M Engelhard!, P Gassman', M Iedema', C. Wang!, H Wang’
IPNNL, 20ORNL, *U. Delaware

Time-Resolved Aerosol Collector

Zinc dialkyldithiophosphate (ZDDP) in
lube o1l for wear protection.
P and S are catalyst poisons.

1 ¢yl 500 cc Hast, Load (0-100%), 1500 RPM,
Lube oil: 50 cc/hour, ZDDP: 0.5 gr/hour




Particle Morphology Changes (SEM)

ls

2% load .+ - ©29%

loa{’dx

)
=
=
=
£ 1
)
-3
wn
<




I;%ﬂicle Composition (CCSEM/EDX)
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X-ray photoemission (XPS)
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FTIR Microscopy:
Hygroscopic properties
of exhaust particles vs
engine load
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Atmospheric Aging Of Particles

What 1s emitted
changes radically in
the atmosphere

Attack by OH radicals
NO;, HNO;,

H,S0, H,0,
Halogen atoms,...

Nitration
Bromination
Peroxides/epoxides
Hypochlorites




We need Rapid Screening means to quantify

Health effects of Particles
B-Y Chin, G Holtom and Brian Thrall

»

Macrophages roam the lung, to eat up particles.
If they get/cause inflammation, this is bad.

Tumor Necrosis Factor (TNF) response of PM-exposed macrophages
starts before and persists long after cells eat the PM...

What determines the persistence of the inflammatory response?



RNA expressed tells what proteins are being commanded to activate
0,1,2,.... hours after PM exposure

Microarray Studies in Macrophages
Reveal TNF Induces Its Own Expression (1 Hr)

Hours after TNF Exposure
0 1 2 4 8 24
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TNF 5| . et e .

Protein

End result: Amplification of TNF
Signaling Pathways Associated with
Inflammation?



Driven by Sustained Activity of MAPK and

F (paimi),

Shed TNF

Metalloprotease Pathways
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Extracellular TNF Released
by PM-Activated
Macrophages
Causes Induction of Other
Pro-inflammatory Cytokines

Synthesis and release of the cytokines IL-1b and GM-CSF are markedly reduced
when extracellular TNF 1s “sequestered” I’:\ladding a neutralizing TNF antibody.
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Positive Feedback Loops Involved in TNF Signaling
Determine the Persistence of the Macrophage Inflammatory Response
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Chin, BY, Holtom, GR, and BD Thrall (submitted).



Where do nanoparticles go 1n cells?
CARS and linear and non-linear
fluorescence microscopy
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Gary Holtom, Yuangang Zheng, and Steven Colson

The cellular observatory team



3-D CARS 1mage of macrophages
that devoured T10, Particles

R photon fl. 1 | CARS of TiO,

Imaging non-fluorescent titanium dioxide nanoparticles in vitro by

nonlinear optical microscopy
Y Zheng, B-Y Chin, B Thrall S Colson and G Holtom (submitted)




3-D CARS image of iron oxide
nanoparticles

Macrophage RAW264.7 at 2200 cm- four consecutive slices

1 um spacing



Macrophages 1n carbon black
suspension

CARS at 1400 cm'! 70x70 pm Two-photon fluorescence
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