

Review of SCR technologies for Diesel Emission Control: European Experience and Worldwide Perspectives

Author and speaker: Dr. Emmanuel Joubert Joint Authors: Dr. Thierry Seguelong

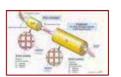
Nicolas Weinstein

Table of Contents

- p. 3 State of the Art
- p. 8 SCR on Heavy Duty Vehicle
- p. 14 SCR on Light Duty Vehicle
- p. 19 Strategy & Perspectives
- p. 22 Conclusions

A Worldwide study on DeNOx market in EU & US

50 contacted companies / 100 leaded interviews


OEMs EMS / Catalyst / Urea Suppliers LDV & HDV EGR / Canners Petroleum Industrie		Legislations Bodies	
15 companies contacted	17 companies contacted	10 companies contacted	7 companies contacted

Aaqius & Aaqius led a large-scale study in Europe and US to draw up a complete panorama of the DeNOx market and identify the stakes & the value chain.

Comparison of DeNOx Technologies

Exhaust Gas Recirculation (EGR)

- US target choice on HDV for US 07
- **8** Not enough for US10

Lean NOx Trap (LNT)

- O No extra fluid
- Passive to driver
- Weak durability
- 8 Fuel penalty (lean/rich regimes 2 min/1s)
- 8 Need advanced engine control (Lean /rich balance)
- PMG cost (Pt, Rh, Pd)
- **8** No fuel flexibility
- Oil dilution penalty

Selective Catalytic Reduction

- © European choice on HDV for EURO 4
- © High efficiency (NH₃/NOx)
- © Fuel efficiency / Lower GHG emissions
- Better durability
- Fuel flexibility (S insensitive)
- Adaptation for mobile sources (transient regimes)
- On-Board Extra-Fluid (Urea, as Ammonia source)
- **8** Urea Infrastructure & Integration

DEER 2004

Focus on SCR Technology + NoxcareTM

- Non toxic
- Not inflammable and no risk of explosion
- Freezing point : 11°C (12°F)
- Corrosive

- 1 NOxCare tank, 2 Temperature sensor, 3 Fuel-level sensor, 4 Supply module, 5 ECU, 6 Metering valve, 7 Air-supply tank,
- 8 Exhaust-gas temperature sensor, 9 Exhaust-gas sensor, 10 Air supply, 11 Treated exhaust-gas, 12 Atomizer pipe

Material specificities

Material compatibility

- Urea solution is corrosive
- Need of stable materials for tank, pipes and fittings

COMPATIBLE	UNSUITABLE
stainless steel	unalloyed steel
austenitic steel	galvanized steel
some aluminums	copper
plastics	Brass

Comparison Plastic / Metal

Plastic is a good choice for future tanks/cartridges

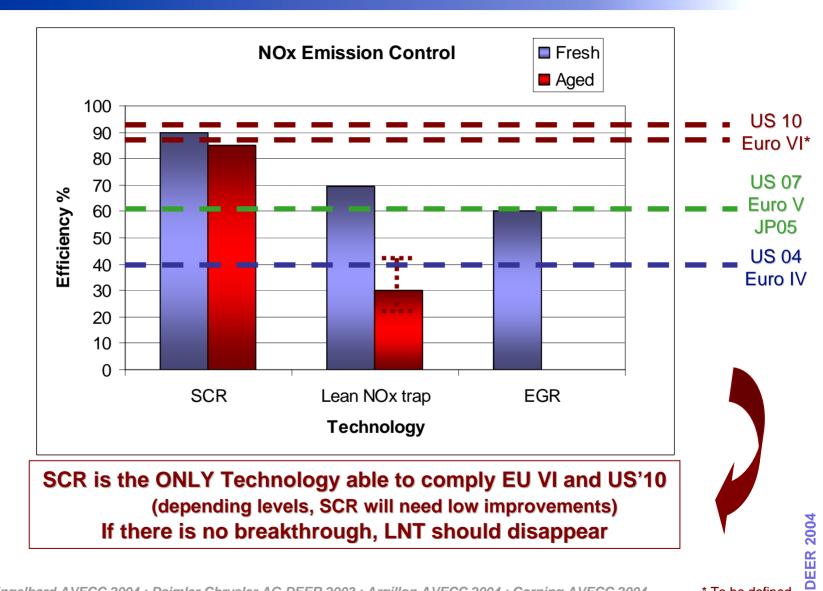
	PLASTIC	METAL	
Design flexibility			
Design cost			
Robustness			
Safety			
Weight			
Material compatibility			
Pressure/vacuum flexibility			
Integration			

Urea need a plastic tank for HD & LD

Selective Catalytic Reduction on Heavy Duty

European & US Technological Trends for Heavy Duty

- **FURO IV** SCR has been chosen by HD OEM to meet Euro 5 limits (Introduction in 2005/2006 timeframe in a Euro 4 environment).
- **EURO VI** Euro 6 target is SCR for cost, however, substantial SCRT or A-DPF penetration likely.
 - LNT not considered for HD in Europe due to cost, fuel penalty, efficiency and durability.


- HD OEMs have decided to use hid/s'07 EGR and CSF in 2007.
- No choice for US'10.

US'10

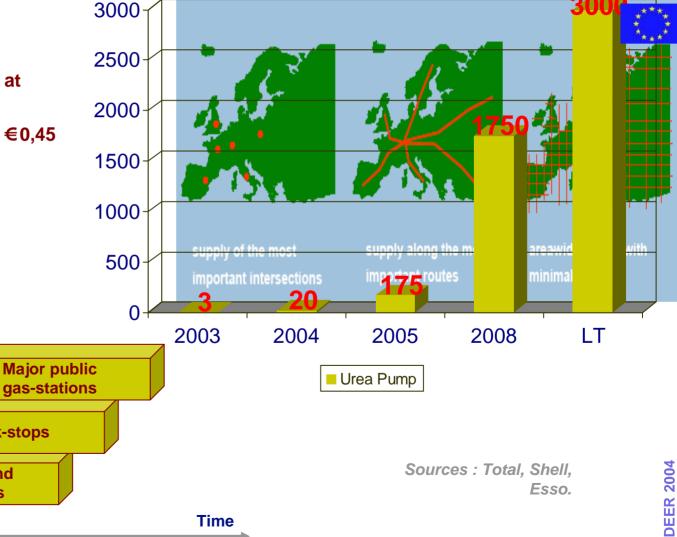
- LNT costs are expected to be higher to both the OEM and the end-user...Pt and fuel required for regeneration.
- SCR will always be more cost-effet when urea cost is less than fuel (urea target \$1.00/gallon).

SCR CHOSEN in Europe – SERIOUS CANDIDATE in US NO Lean NOx Trap developments anymore in EU

SCR is the best technology to comply US10/Euro VI

A Progressive implementation of the Infrastructure

→ Present urea price at pump: €0,599

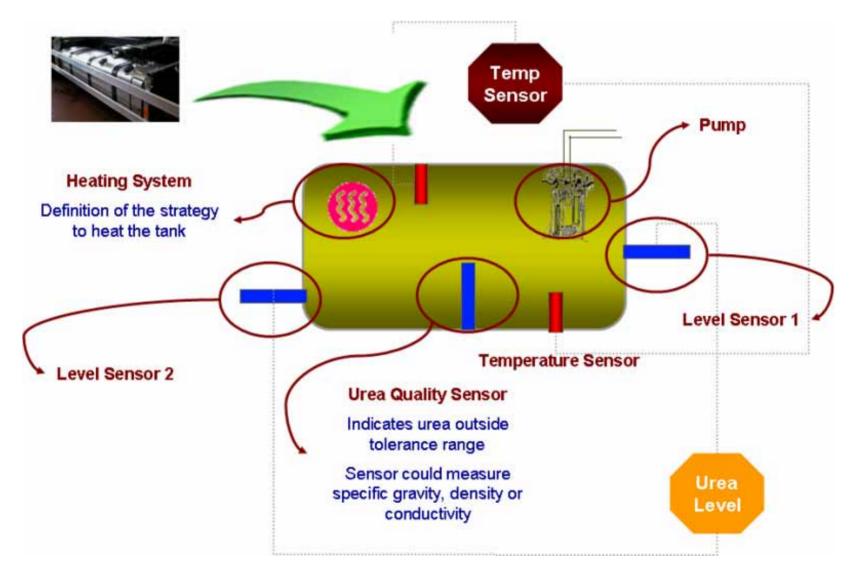

→OEM expectation : €0,45

Truck-stops

Truck-fleet and

warehouses

→ ACEA: €0,40



Volume **Noxcare**

Source: Purem, DCX

Go to Generation 2: Plastic Urea Tank

Conclusion for SCR on HDV

Europe

- For future NOx emissions regulations in EU & US, SCR offers a unique solution for the most severe.
- For SCR, main issues are going to be solved (integrated plastic tank, tank compatibility, material, infrastructure).
- The technology and processes necessary to SCR are available today even though infrastructure is not available completely.

US

- → At present US can take position for 2007 2010 for SCR and take advantage of the global experience in EU.
- SCR could be initially rolled out in US for HDV with a limited infrastructure (like in EU).

Selective Catalytic Reduction on Light Duty

European & US Technological Trends for Light Duty

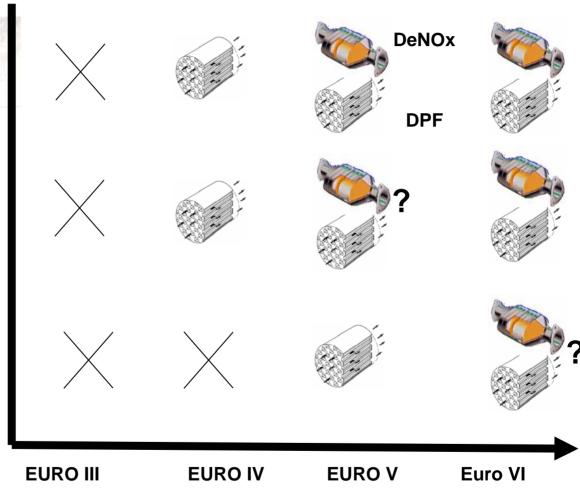
- No clear Euro 5 scenario on LD as limits are not defined yet
- Three Euro 5 NOx scenarios identified:
 - **,** mild": 0.18-0.20 g/km
 - moderate": 0.125 g/km
 - ,aggressive": 0.08 g/km
- If denoxation is required, SCR and LNT technology could be in use
- At present LNT not mature and a few perspective for future due to disadvantages.
- If Euro 5 NOx limits are "mild" (2008), Euro 6 NOx limit will be "aggressive" (2010 – 2012).

- European technology will be leveraged
- DCX has announced the introduction of an SCR system on the Mercedes E320 in low volume in 2007...Bin6

SCR is BEST CANDIDATE and MOST COMPETITIVE in EU & US Lean NOx Trap is FARAWAY

(LNT need a breakthrough to survive)

DEER 2004


SUV & Executive



Mid-Size

Small-Size

From today viewpoint Combination of DPF and DeNOx Technology seems necessary

Source: FEV CAPOC 6 - 2003

Tier 2 Bin 5

SCR is in progress on Light Duty Vehicles

All car manufacturers are working strongly on SCR solution for Euro V and Euro VI regulations :

Ford Focus demonstration with SCR:

Urea SCR can provide >90% NOx conversion required for US07 LDV & HDV standards with advantages / LNT:

- Wider temperature window Greater durability
- Lower fuel economy penalty No oil dilution
- Lower usage cost
 Lower system cost

Mercedes has announced:

E320 CDI turbo Diesel with SCR system in 2007 in US

Mercedes Press

Release

View of Urea integration solution

Material

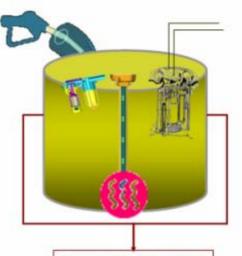
Plastic

Filling

Classical Co-filling/fueling Dealer Service

Venting

Valves


Electronics

To calculate consumption//
Urea injection supply

Integrated inside FS perimeter

Supplementary tank Integrated tank (supplementary tank/double pocket/ INSAS for refilling at trap)

Global urea Vehicle integration

Vehicle integration with a plastic tank

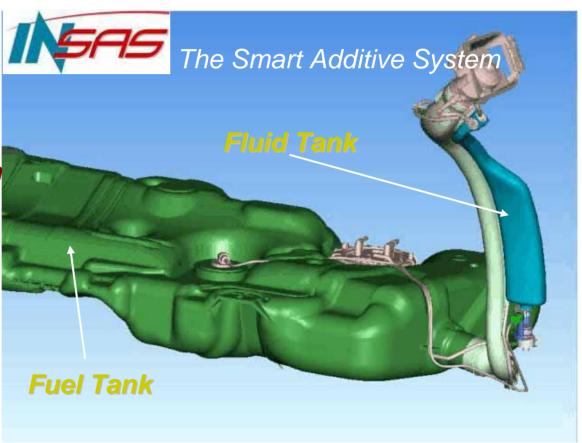
Pump to supply dosing/injection Pressure regulator Lines (heated/purged)

Storage and level measurement

Heating
Temperature sensor
Level sensor
Urea quality sensor
Security device when empty

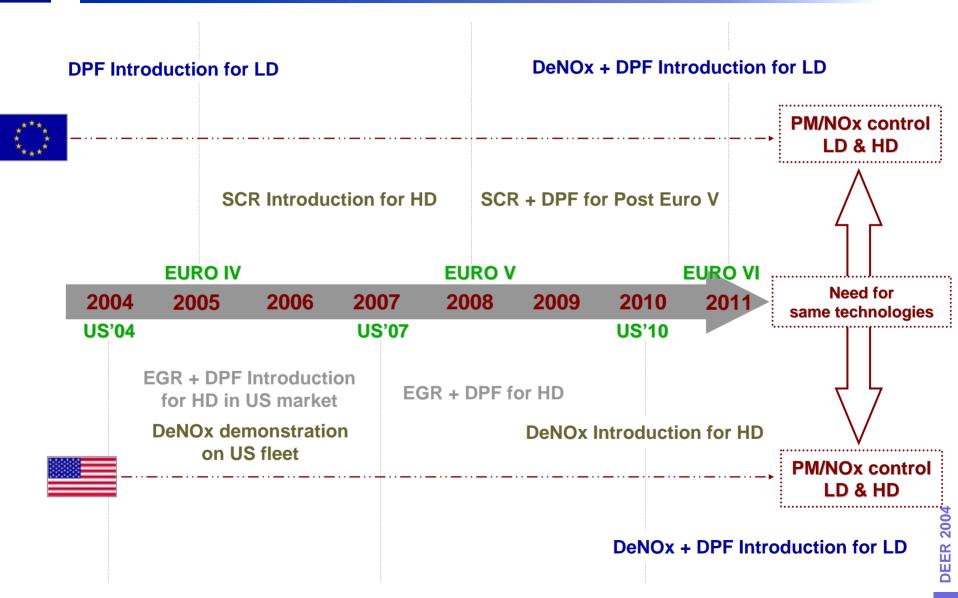
Integrated outside FS perimeter

Partnership to locate urea tank outside FS perimeter with integrated functions (solutions to refill at trap)

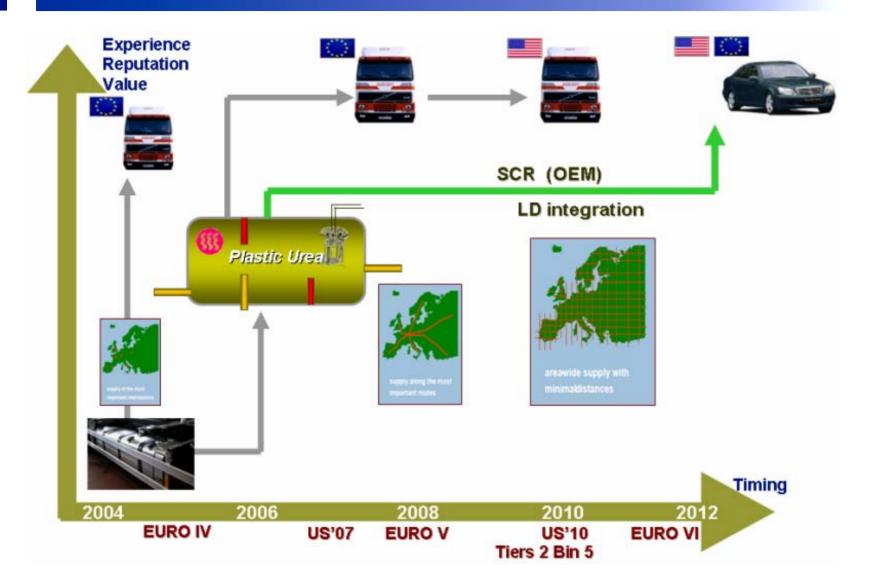

Integrated Flyid System: Easy and Simple

Example for onboard vehicle fluid :

Additive for DPF


- Flexible Design
- Integration simplification
- **►** Lower cost

Source : Inergy Automotive Systems


Conclusions & Perspectives for DeNOx market

2010-12: The need for the same technology

DEER 2004

Perspectives for SCR: A Global Strategy

DEER 2004

Conclusion & Perspectives

Main issues are going to be solved for SCR:

(mains actors are taking position for SCR)

- integrated plastic tank for better design integration
- Compatibility materials
- **➡** Infrastructure and filling/ refilling
- Better strategy for Urea injection.

For future emissions regulations in EU & US, SCR in combination with DPF offers a unique and global solution for the most severe regulations:

CO2 emission will be an issue for the next decade: With SCR fuel consumption are lowest.

For future emissions regulations in 2010 - 2012, EU & US could use the same technology to comply emissions regulations.

EU & US have to work closely in order to define standard for SCR.

OEMs target cost is a major point :

- For NOx & PM regulations the lower technology cost will be the favourite candidate.
- For NOx regulations, SCR technology is 2 times less expensive for LDV and 3 for HDV (Ford SAE 2004)

23