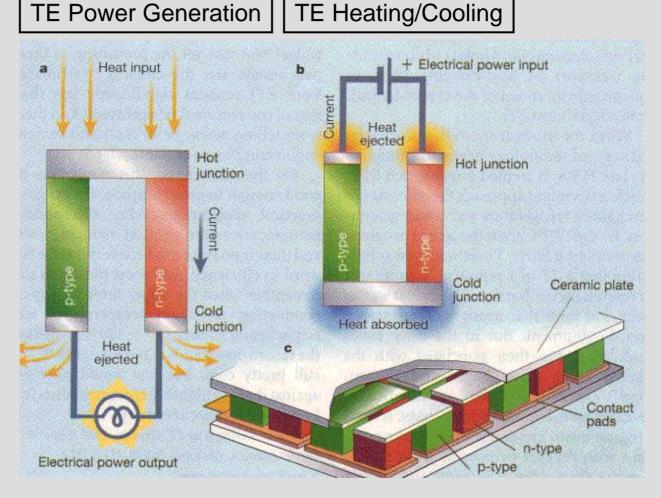
Multilayer Thin Film Thermoelectric Materials for Vehicle Applications


Peter M. Martin, L. C. Olsen and S. Baskaran Pacific Northwest National Laboratory Richland, WA

Thermoelectric Applications

- Power Generation
 - Radioisotopes
 - Nuclear reactor systems
 - Engine Exhaust
 - Process Industries
- Thermoelectric heating/cooling for temperature/ climate control
 - Equipment, components
 - Vehicular systems
- Thermoelectric conversion efficiency >>15% desired

R&D Objectives at PNNL

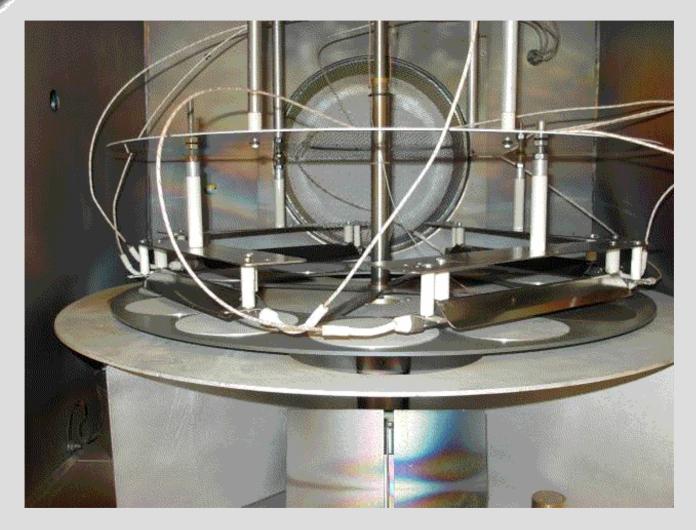
- Develop economical fabrication processes for multilayer thin film thermoelectric materials with high conversion efficiency
- Establish measurement protocols for thin film thermoelectric materials
- Test and validate basic properties and conversion efficiency of promising thermoelectric materials
- Assist industry partners with testing and integration of thermoelectric materials in modules and vehicular systems

Thermoelectrics Projects

- Scale-up of Multilayer Quantum Well Thin Films for Vehicular Applications (DOE-EERE/FCVT)
- Thermoelectric materials for waste heat recovery from glass and aluminum production (DOE-EERE/ITP)

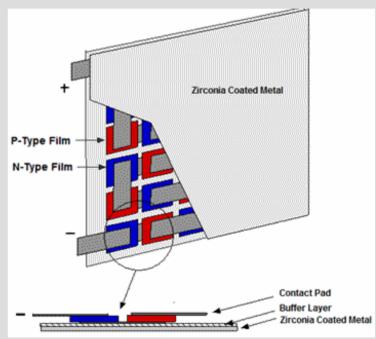
Why thin films?

- Properties of bulk materials determined primarily by composition and microstructure
- Properties of thin films
 - Microstructure
 - Composition
 - New and more compositions possible
 - Quantum and quantum well effects
 - Nanostructures
 - Thickness
 - Band gap engineering
- ► Higher TE power per gram possible
- ▶ New TEG device configurations
- ▶ Higher TEG power output


Important TE Properties

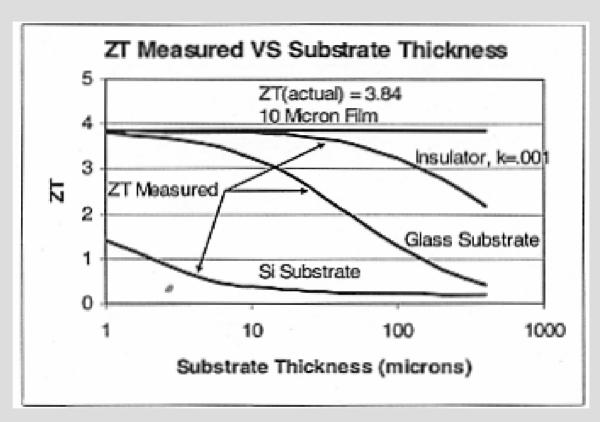
- Figure of merit ZT = sS2T/k
- TEG efficiency derived from ZT
- ► Power factor = sS2T (excludes k)
- ▶ PF between 0.01 and 0.05 desirable
 - For k ~ 0.02 W/cmK

TE Materials/Device Development at PNNL


- Multilayer thin film TE materials developed on single crystal Si
 - Si/SiGe
 - BC (Ge)
 - Power factors of multilayer > single layer films
 - High Power factor -> ZT > 2 (300K)
- Process for multilayer thin film coatings scaled up to 0.5 m2
- Development of multilayer thin film TE materials on non-Si substrates initiated
- ► Integration of thin film materials into TEG modules
- ► TEG efficiency measurements

Scale up to 0.5 m2 Substrate

Improved thin-film materials, low-cost scale-up, device design and packaging, and thermal management required for applications

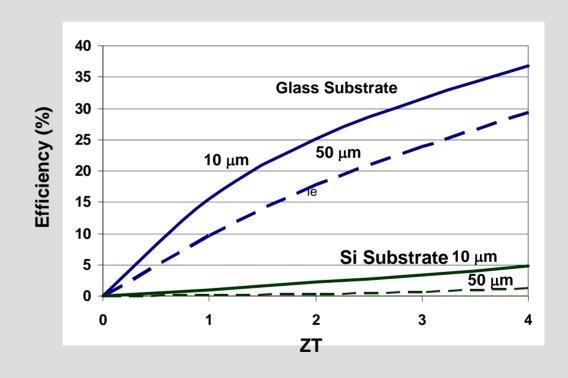


Large-Area Sputter Deposition

Device Design Schematic

Calculated Effective ZT

Bottom Line: High-efficiency TEG devices cannot be realized with high-ZT materials on Si substrates.


Reality check

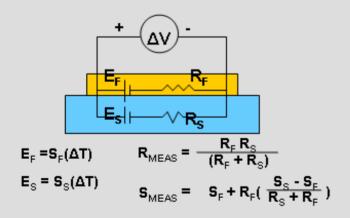
A lower ZT structure on a NC substrate will result in a higher TEG efficiency than a high ZT structure on a Si substrate

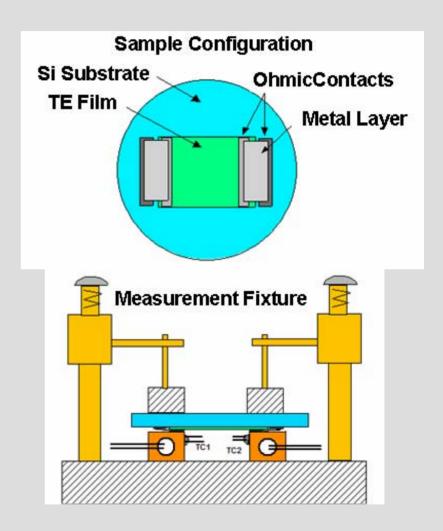
Effect Of Substrate For TE Thin Films

Assumptions

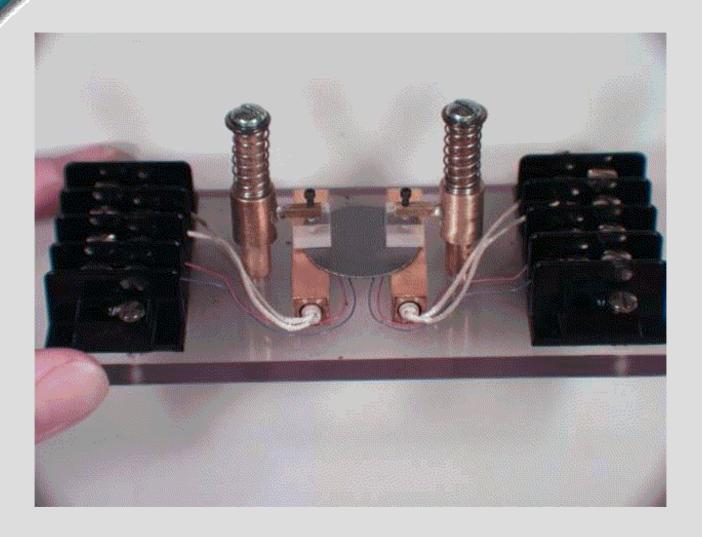
- 📝 10 µm TE Film
- Z Constant from 300°K to 700 K
- ZT Calculated for T = 300°K
- Estimated Efficiency for ΔT = 400°K

The Challenge


- Presently the power factor of TE films on NC substrates is an order of magnitude less than those on Si
- Grow highly oriented crystalline thin film multilayer materials on low cost, non crystalline substrates
 - Large area
 - Low cost
- Easy assembly/connection in a TE module
 - Not the same as bulk!


Measurement Approach

Key Features


- Ohmic Contacts Applied to Film and Substrate
- Soldered Thermocouples
- □ Gold Plated Heater Assemblies

Assumed Model

Measurement Fixture

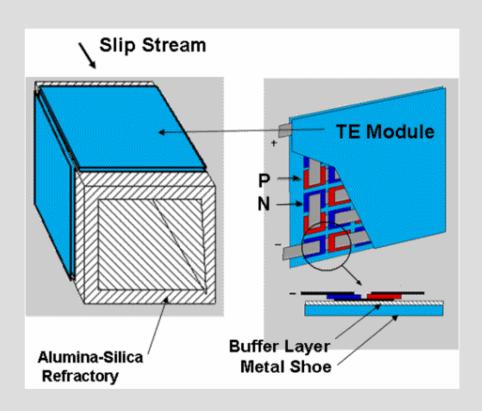
Thin film Si/Si_{0.8}Ge_{0.2} on Si

Material	Electrical Conductivity (ohm ⁻¹ cm ⁻¹)	Seebeck Coefficient (µV/ºC)	Power Factor	
N-Silicon	60	600	0.0065	
N-SiGe	35	800	0.0067	
N-Si/SiGe ML	300	750	0.051	

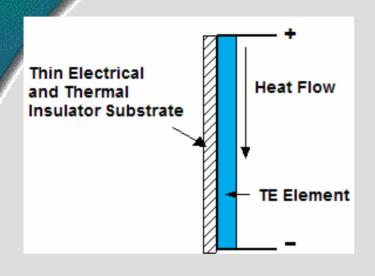
Thin film BC Results

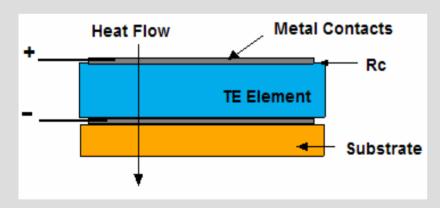
Sample	Process	σ (0)-1	S (μV/ºC)	PF
<u> </u>		(Ω–cm) ⁻¹		
B ₉ C-Ge	600 °C	35	340	0.0012
B ₉ C-Ge	HT @ 1000°C	1660	223	0.025
(B ₄ C/B ₉ C- Ge) ²⁰	600 °C HT@1000 °C	2560	201	0.031
(B ₄ C/B ₉ C- Ge) ¹⁰	600 °C	4160	233	0.068*
B ₉ C/ sapphire	600°C HT @ 1000 °C	118	170	0.001

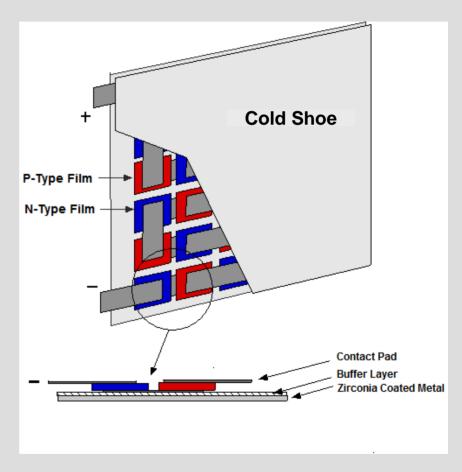
New Materials: results to date


Sample No.	# Layers	S(μV/K)	σ(Ω.cm) ⁻¹	Power factor
1Q-S/FS	186	235	116	0.002
1S-S/FS	200	110	110	0.0011
1T-S/FS	300	127	127	0.0012

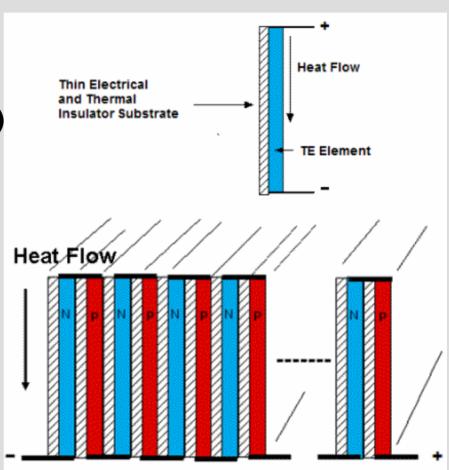
TEG System Components


- Heat Exchanger Coupled to Waste Heat Source
- TEG Module
- ► Cold Side Heat Exchanger


Preliminary Concept for Waste Heat Conversion Test Bed

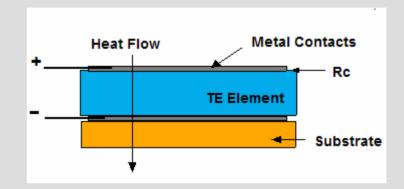

- Assumptions:
 - Utilize Slip Stream from Oxy-Furnace-Gas at 2700°F
 - Temperature at Hot Shoe 1160°F (900°K) with 1 cm Firebrick
 - Using Water Cooling Cold Shoe at 73°F (300°K)
- Heat Flow into TE Modules:1.3 W/cm2
- Four 1 meter x 10 cm TE Converters:
 - 520 Watts @ 10% Efficiency
 - 1040 Watts @ 20% Efficiency

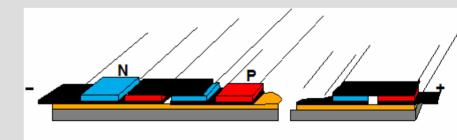
Configuration for Thin Films in Modules



Thin Film Modules – Parallel Flow

Key Issues


- Thin Film Deposition on Thin Insulating Substrates
 - Thickness (10s of microns)
 - Stress in Films
 - TE Properties of Films
- Substrates
 - Thickness < 1 mil
 - Low Thermal and Electrical Conductivity
- Contact Technology



Thin Film Modules – Normal Flow

Key Issues


- Thin Film Deposition
 - Thickness (Need 100 microns)
 - Stress in Films
 - TE Properties of Films
- Substrates
 - Good Thermal Conductivity
 - Electrically Insulating
 - Can Be Coated Metal Sheet
- Contact Technology
 - Contact Resistance Must Be Very Low

The Path Forward to Low Cost Thin Film TEG with High Conversion Efficiency

- Low cost deposition of multilayer TE thin film materials on non-Si substrates
- New TE materials thin films and nanocomposites
- Integration into TEG module
 - Parallel or cross plane geometry
 - Electrical contacts
 - Efficient heat exchangers (cold/hot side)

Examples of aluminum finned microchannel heat exchanger structures

Pacific Northwest National Laboratory

Northwest National Laboratory
U.S. Department of Energy

Status of TE Thin Films

- Multilayers perform much better than single layers
- Substrate thermal conductivity critical
 - Models show that high ZT and conversion efficiencies cannot be achieved using Si substrates (even for very high ZT ~ 4)
 - Disordered microstructure important for low thermal conductivity
- Low cost high efficiency thin film TE structures can be best realized on non-crystalline substrates
- All development work now focused on non-crystalline substrates
 - Presently BC system offer promise, but needs further work
 - New thin film materials being evaluated
 - Efficiencies > 15 % can be realized with ZT ~2

Accomplishments (all projects)

- Evaluated Si/SiGe and B4C/B9C multilayer coatings for TEG applications
- Critical measurements for thin film TE materials
- Initiated development of new thin film TE materials on low cost substrates
- Evaluated and proceeding with TEG module development
 - Materials and substrate requirements
 - Device components
 - Device geometries
 - Device assembly/contacts
 - Testing