Heavy Truck Clean Diesel (HTCD) Program Heavy Duty HCCI Development Activities

DOE Contract DE-FC05-00OR22806

Team Leader: Gurpreet Singh Prgm Mgr: Roland Gravel Tech Mgr: Carl Maronde

Caterpillar Pl's: Kevin Duffy, Andrew Kieser, Eric Fluga Prgm Mgr: David Milam

> 2004 DEER Conference Coronado, CA Aug 31, 2004

2010 Emissions/Efficiency Challenge

By 2010 NOx levels must be below 0.2 g/hp*hr

These levels are unlikely with traditional diesel combustion and at best incur large BSFC and particulate penalties

How do we meet 2010 NOx levels AND improve engine efficiency?

Combustion Methods

HCCI Development at Caterpillar

Flexible Injection System

Mixed Mode Injector

Fuel/Engine Systems Approach

<u>CAT</u>

Hardware Engine Testing Systems Integration

Combustion Modeling

Fluid Dynamics

<u>ExxonMobil</u>

Fuel

Advanced Characterization

Refining Process Technology

Chemical Kinetics

Systems Modeling

2004 DEER Conference

" "B" "C" "D" "E"

C2C*O

C2•C*O

с•ссоон с*сс

HOOCCCHO + OH. C*CC.

Joint Program Objectives

HCCI Combustion

 Evaluate suitability of a range of fuels to facilitate HCCI combustion with goal of identifying preferred HCCI fuels in an optimized engine system

Multi-dimensional Diesel Combustion Modeling

 Model diesel HCCI combustion using chemical kinetic mechanisms and multi-dimensional CFD

Initial Testing Shows No Benefit for Increased Cetane

- Initial testing on effect of cetane #, aromatic content
- In general, fuel property changes can impact cylinder pressure rise rates, combustion phasing and HC/CO emissions
- Increasing cetane # produced undesirable advance in combustion phasing
- Fuels effects dependent on HCCI injection, combustion approach
 - Details to be presented at IFP Conference in Sept, 2004.

Climbing the BMEP Ladder

Top of the BMEP Ladder

Test Background

3401 single cylinder engine	
Low CR piston	
Multi-hole nozzle	
Conventional #2 Diesel fuel	
No catalyst used, CO/HC levels are engine-out	
Variables: Injection timing, Boost/backpressure (eff. turbo efficiency), manifold temp, etc.	

Displacement	2.44L
Bore/Stroke	137.2 / 165.1 mm
Connecting Rod Length	261.6 mm
Valves per cylinder	4
Injection System	Intensified Hydraulic
Swirl Ratio	~0.4
Inlet Valve Open, Close	320.3, 568.7 deg
Exhaust Valve Open, Close	119.5, 380.0 deg

Full Load Diesel HCCI Operation

2004 DEER Conference

1200 rpm, Load Sweep

Compression Ratio Effect

2004 DEER Conference

Single Cylinder HCCI Emissions Data

HC/CO Emissions Data

15.5 g/hphr CO standard for onhighway in 2010. Off-road levels for Tier 4 in the 3-4 g/hphr range.Oxidation catalysts at 90%efficiency should achieve these levels with sufficient temperature.

BMEP (kPa)

0.14 g/hphr HC standard for 2010. Light loads very challenging. Higher loads will still require 80%+ HC conversion (temp is sufficient).

Low Temperature Oxidation Catalysts

Many Challenges Remain

- Multi-cylinder engine implementation
- Controlling combustion phasing (best sensor?), ECM processor capability, transients
- Light load HC/CO cleanup
- Structural reliability with higher PCP and rise rates
- Noise/vibration
- Etc.

Summary and Conclusions

- Fundamental recipe for HCCI operation with diesel fuel now developed
- Significant progress made on expanding operating range for HD HCCI engine
- Full load HCCI extremely challenging
- Flexible fuel systems can enable mixed mode operation
- Fuels effects can have impact on performance/emissions
- Much work still needed to determine production feasibility of HCCI as a 2010 emissions strategy
- Advanced technology Diesel engines should continue to have long term viability as a prime power source for on and off-highway markets